Solveeit Logo

Question

Question: In the adjoining diagram, a wavefront AB, moving in air is incident on a plane glass surface XY. Its...

In the adjoining diagram, a wavefront AB, moving in air is incident on a plane glass surface XY. Its position CD after refraction through a glass slab is shown also along with the normals drawn at A and D. The refractive index of glass with respect to air (m = 1) will be equal to-

A

sinθsinθ\frac { \sin \theta } { \sin \theta ^ { \prime } }

B

sinθsinϕ\frac { \sin \theta } { \sin \phi ^ { \prime } }

C

sinϕsinθ\frac { \sin \phi ^ { \prime } } { \sin \theta }

D

ABCD\frac { \mathrm { AB } } { \mathrm { CD } }

Answer

sinθsinϕ\frac { \sin \theta } { \sin \phi ^ { \prime } }

Explanation

Solution

t = BCVa\frac { \mathrm { BC } } { \mathrm { V } _ { \mathrm { a } } } = so, BCAD\frac { \mathrm { BC } } { \mathrm { AD } } =

DACB BC = AC sinq

DACD AD = AC sinf¢

So == sinθsinϕ\frac { \sin \theta } { \sin \phi ^ { \prime } }

so μgμa\frac { \mu _ { \mathrm { g } } } { \mu _ { \mathrm { a } } }= VaVg\frac { V _ { a } } { V _ { g } } = sinθsinϕ\frac { \sin \theta } { \sin \phi ^ { \prime } }