Solveeit Logo

Question

Question: In sin x + sin 2 x = 1 , then cos 6 x + cos 12 x + 3 cos 10 x + 3 cos 8 x is equal to...

In sin x + sin 2 x = 1 , then cos 6 x + cos 12 x + 3 cos 10 x + 3 cos 8 x is equal to

Answer

0

Explanation

Solution

Given:

sinx+sin2x=1\sin x + \sin 2x = 1

Use the double-angle identity sin2x=2sinxcosx\sin 2x = 2 \sin x \cos x. Then,

sinx(1+2cosx)=1.\sin x (1+2\cos x)=1.

A simple value that works is x=π2x=\frac{\pi}{2} because:

sinπ2=1,cosπ2=01(1+0)=1.\sin \frac{\pi}{2}=1,\quad \cos\frac{\pi}{2}=0 \quad\Rightarrow\quad 1\cdot (1+0)=1.

Now, substitute x=π2x=\frac{\pi}{2} in the expression:

cos6x+cos12x+3cos10x+3cos8x.\cos6x+\cos12x+3\cos10x+3\cos8x.

Compute each term:

  • cos6x=cos(6π2)=cos(3π)=1,\cos6x = \cos\left(6\cdot\frac{\pi}{2}\right)=\cos(3\pi)=-1,
  • cos12x=cos(12π2)=cos(6π)=1,\cos12x = \cos\left(12\cdot\frac{\pi}{2}\right)=\cos(6\pi)=1,
  • cos10x=cos(10π2)=cos(5π)=1,\cos10x = \cos\left(10\cdot\frac{\pi}{2}\right)=\cos(5\pi)=-1,
  • cos8x=cos(8π2)=cos(4π)=1.\cos8x = \cos\left(8\cdot\frac{\pi}{2}\right)=\cos(4\pi)=1.

Substitute these back:

1+1+3(1)+3(1)=0.-1 + 1 + 3(-1) + 3(1) = 0.