Solveeit Logo

Question

Mathematics Question on Circle

In radius of a circle which is inscribed in a isosceles triangle one of whose angle is 2π/3,is32 \pi / 3, \, is \, \sqrt 3, then area of triangle (in sq units) is

A

4 3\sqrt 3

B

12 - 7 3\sqrt 3

C

12 + 7 3\sqrt 3

D

None of these

Answer

12 + 7 3\sqrt 3

Explanation

Solution

Let AB = AC = a and 120 \angle 120^\circ. \therefore Area of triangle = 12a2sin120\frac{1}{2} a^2 \, sin \, 120^\circ where, a = AD + BD = 3tan30+3cot15 \sqrt 3 \, tan \, 30^\circ + \sqrt 3 \, cot \, 15^\circ \hspace17mm = 1 + 3tan(4515) \frac{ \sqrt 3}{ tan \, (45^\circ - 15^\circ)} a=1+3(1+tan45tan30tan45tan30)\Rightarrow a = 1 + \sqrt 3 \bigg( \frac{1 + tan \, 45^\circ \, tan \, 30^\circ}{ tan \, 45^\circ - tan \, 30^\circ}\bigg) = 1 + 3(3+13+1)=4+23\sqrt 3 \bigg( \frac{ \sqrt 3 + 1}{ \sqrt 3 + 1} \bigg) = 4 + 2 \sqrt 3 \therefore Area of triangle = 12(4+23)2(32)=(12+73)\frac{1}{2} (4 + 2 \sqrt 3)^2 \bigg( \frac{ \sqrt 3}{2}\bigg) = (12 + 7 \sqrt 3) sq units.