Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

In R3R^3, Let LL be a straight line passing through the origin. Suppose that all the points on LL are at a constant distance from the two planes P1:x+2yz+1=0P_1 : x + 2y - z + 1 = 0 and P2:2xy+z1=0P_2 : 2x - y + z - 1 = 0. Let MM be the locus of the feet of the perpendiculars drawn from the points on LL to the plane P1P_1. Which of the following points lie(s) on MM ?

A

(0,56,23)\left(0, -\frac{5}{6}, -\frac{2}{3}\right)

B

(16,13,16)\left( -\frac{1}{6}, -\frac{1}{3}, \frac{1}{6}\right)

C

(56,0,16)\left( -\frac{5}{6}, 0, \frac{1}{6}\right)

D

(13,0,23)\left( -\frac{1}{3}, 0, \frac{2}{3}\right)

Answer

(16,13,16)\left( -\frac{1}{6}, -\frac{1}{3}, \frac{1}{6}\right)

Explanation

Solution

P1:x+2yz+1=0P_{1} : x + 2y - z + 1 = 0
&P2:2xy+z1=0\& \,P_{2} : 2x - y + z - 1 = 0
Direction Ratios of common line (1,3,5)?i^3j^5k^\left(1, -3, -5\right) ? \hat{i}-3\hat{j}-5\hat{k}
L:x1=y3=z5=tL : \frac{x}{1} = \frac{y}{-3} = \frac{z}{-5} = t
Let M(a,?,?)\left(a, ?, ?\right) is feet of perpendicular from (t,3t,5t)\left(t, -3t, - 5t\right) on P1P_{1}
αt1=β+3t2=γ+5t1=(t6t+5t+16)\frac{\alpha-t}{1} = \frac{\beta+3t}{2} = \frac{\gamma+5t}{-1} = -\left(\frac{t-6t+5t+1}{6}\right)
α=t16β=3t13γ=5t+16\alpha = t-\frac{1}{6}\quad\beta = -3t -\frac{1}{3}\quad\gamma = -5t + \frac{1}{6}
Only option (A)&(B)\left(A\right) \& \left(B\right) satisfies.