Solveeit Logo

Question

Question: In \({{R}^{3}}\) , Consider the planes \({{P}_{1}}:y=0\) and \({{P}_{2}}:x+z=1\). Let \({{P}_{3}}\) ...

In R3{{R}^{3}} , Consider the planes P1:y=0{{P}_{1}}:y=0 and P2:x+z=1{{P}_{2}}:x+z=1. Let P3{{P}_{3}} be a plane, different from P1{{P}_{1}} and P2{{P}_{2}} , which passes through the intersection point of P1{{P}_{1}} and P2{{P}_{2}} . If the distance of the point (0,1,0)(0,1,0) from P3{{P}_{3}} is 1 and the distance of a point (α,β,γ)(\alpha ,\beta ,\gamma ) from P3{{P}_{3}} is 2, then which of the following are true
a) 2α+β+2γ+2=0 b) 2αβ+2γ+4=0 c) 2α+β2γ10=0 d) 2αβ+2γ8=0 \begin{aligned} & \text{a)}\text{ 2}\alpha +\beta +2\gamma +2=0 \\\ & \text{b) 2}\alpha -\beta +2\gamma +4=0 \\\ & \text{c) 2}\alpha +\beta -2\gamma -10=0 \\\ & \text{d) 2}\alpha -\beta +2\gamma -8=0 \\\ \end{aligned}

Explanation

Solution

Now we are given equation of two planes P1,P2{{P}_{1}},{{P}_{2}} and we know that the plane P3{{P}_{3}} passes through intersection of P1{{P}_{1}} and P2{{P}_{2}}. Now we know equation of plane passing through intersection of planes P1=0 and P2=0{{P}_{1}}=0\text{ and }{{\text{P}}_{2}}=0 is P2+λP1=0{{P}_{2}}+\lambda {{P}_{1}}=0 . Hence we find the equation of P3{{P}_{3}} in terms of λ. Now we will use the Condition that the plane is at a distance 1 from point (0,1,0)(0,1,0)to find the value of λ. Now we know that the distance between point (x1,y1,z1)({{x}_{1}},{{y}_{1}},{{z}_{1}}) and the plane ax+by+cz+d=0ax+by+cz+d=0 is given by the formula ax1+by1+cz1+da2+b2+c2\left| \dfrac{a{{x}_{1}}+b{{y}_{1}}+c{{z}_{1}}+d}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right|. Hence using the condition we will find the value of λ and Now we have the equation of plane P3{{P}_{3}}. Now we will use our next condition which is the distance of a point is (α,β,γ)(\alpha ,\beta ,\gamma ) from P3{{P}_{3}} is 2. Hence again using the formula of distance of point from plane we can find the conditions equation in α, β, γ.

Complete step by step answer:
Now we are given equations of planes P1{{P}_{1}} and P2{{P}_{2}}. P1:y=0{{P}_{1}}:y=0 and P2:x+z=1{{P}_{2}}:x+z=1
Hence we have P1:y=0{{P}_{1}}:y=0 and P2:x+z1=0{{P}_{2}}:x+z-1=0 . \
Now we know that equation of plane passing through intersection of planes P1=0 and P2=0{{P}_{1}}=0\text{ and }{{\text{P}}_{2}}=0 is P2+λP1=0{{P}_{2}}+\lambda {{P}_{1}}=0 and we are given that the plane P3{{P}_{3}} passes through the intersection of P1=0 and P2=0{{P}_{1}}=0\text{ and }{{\text{P}}_{2}}=0 .
Hence we have equation of P3{{P}_{3}}
P3:x+z1+λy=0................(1){{P}_{3}}:x+z-1+\lambda y=0................(1)
It is given that the distance of the point (0,1,0)(0,1,0) from this plane is 1.
Now we know that the distance between point (x1,y1,z1)({{x}_{1}},{{y}_{1}},{{z}_{1}}) and the plane ax+by+cz+d=0ax+by+cz+d=0 is given by the formula ax1+by1+cz1+da2+b2+c2\left| \dfrac{a{{x}_{1}}+b{{y}_{1}}+c{{z}_{1}}+d}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right|.
Hence applying this we get

& \left| \dfrac{1(0)+1(0)-1+\lambda (1)}{\sqrt{{{1}^{2}}+{{\lambda }^{2}}+{{1}^{2}}}} \right|=1 \\\ & \Rightarrow \left| \dfrac{\lambda -1}{\sqrt{{{\lambda }^{2}}+2}} \right|=1 \\\ \end{aligned}$$ Now we will solve further by taking square on both sides. $$\begin{aligned} & \dfrac{{{(\lambda -1)}^{2}}}{{{\left( \sqrt{{{\lambda }^{2}}+2} \right)}^{2}}}=1 \\\ & \Rightarrow \dfrac{{{\lambda }^{2}}+1-2\lambda }{{{\lambda }^{2}}+2}=1 \\\ & \Rightarrow {{\lambda }^{2}}+1-2\lambda ={{\lambda }^{2}}+2 \\\ & \Rightarrow 1-2\lambda =2 \\\ & \Rightarrow -2\lambda =2-1 \\\ & \Rightarrow \lambda =-\dfrac{1}{2} \\\ \end{aligned}$$ Now we have found that $\lambda =-\dfrac{1}{2}$ Substituting the value of λ in equation (1) we get the equation for plane ${{P}_{3}}$ ${{P}_{3}}:x+z-1-\dfrac{y}{2}=0$ Now multiplying the whole equation by 2 we get ${{P}_{3}}:2x+2z-2-y=0$ Now we will use the second condition given to us that is distance of a point is $(\alpha ,\beta ,\gamma )$ from ${{P}_{3}}$ is 2 Hence again using the formula distance between point $({{x}_{1}},{{y}_{1}},{{z}_{1}})$ and the plane $ax+by+cz+d=0$ is given by $$\left| \dfrac{a{{x}_{1}}+b{{y}_{1}}+c{{z}_{1}}+d}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right|$$ Now using this we get $$\begin{aligned} & \left| \dfrac{2\alpha +2\gamma -2-\beta }{\sqrt{{{2}^{2}}+{{2}^{2}}+{{(-1)}^{2}}}} \right|=2 \\\ & \Rightarrow \left| \dfrac{2\alpha +2\gamma -2-\beta }{\sqrt{4+4+1}} \right|=2 \\\ & \Rightarrow \left| \dfrac{2\alpha +2\gamma -2-\beta }{3} \right|=2 \\\ & \Rightarrow |2\alpha +2\gamma -2-\beta |=6 \\\ & \Rightarrow 2\alpha +2\gamma -2-\beta =\pm 6 \\\ \end{aligned}$$ Let us first take $$2\alpha +2\gamma -2-\beta =6$$ $$\begin{aligned} & \Rightarrow 2\alpha +2\gamma -2-\beta -6=0 \\\ & \Rightarrow 2\alpha +2\gamma -\beta -8=0 \\\ \end{aligned}$$ And also $$2\alpha +2\gamma -2-\beta =-6$$ $$\begin{aligned} & \Rightarrow 2\alpha +2\gamma -2-\beta +6=0 \\\ & \Rightarrow 2\alpha +2\gamma -\beta +4=0 \\\ \end{aligned}$$ **So, the correct answer is “Option B and D”.** **Note:** The formula for distance between point $({{x}_{1}},{{y}_{1}},{{z}_{1}})$ and the plane $ax+by+cz+d=0$ is given by $$\left| \dfrac{a{{x}_{1}}+b{{y}_{1}}+c{{z}_{1}}+d}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right|$$. Not confuse it with $$\left| \dfrac{a{{x}_{1}}+b{{y}_{1}}+c{{z}_{1}}+d}{\sqrt{{{x}_{1}}^{2}+{{x}_{2}}^{2}+{{x}_{3}}^{2}}} \right|$$ . Also the equation of plane passing through intersection of planes ${{P}_{1}}=0\text{ and }{{\text{P}}_{2}}=0$ can be taken as ${{P}_{1}}+\lambda {{P}_{2}}=0$ .