Solveeit Logo

Question

Question: In problem no. 7, if the point 'P' moves in such a way that d(P, OA) \< min {d (P, OB}, d(P, AB)}, t...

In problem no. 7, if the point 'P' moves in such a way that d(P, OA) < min {d (P, OB}, d(P, AB)}, then area of the region representing all possible positions of the point 'P' is equal to

A

3\sqrt { 3 }sq. units

B

6\sqrt { 6 }sq. units

C

13\frac { 1 } { \sqrt { 3 } }sq. units

D

16\frac { 1 } { \sqrt { 6 } } sq. union

Answer

13\frac { 1 } { \sqrt { 3 } }sq. units

Explanation

Solution

We must have d(P, OA) ≤ d(P, OB) as well as d(P, OA) ≤ d(P, AB).

Thus, 'P' lies either on or below the angle bisectors of ∠BOA and ∠BAO. Required area = 13ΔOAB=13\frac { 1 } { 3 } \cdot \Delta _ { \mathrm { OAB } } = \frac { 1 } { \sqrt { 3 } } sq. units.