Solveeit Logo

Question

Question: In planetary motion the areal velocity of position vector of a planet depends on angular velocity \(...

In planetary motion the areal velocity of position vector of a planet depends on angular velocity (ω)( \omega ) and the distance of the planet from sun (r). If so the correct relation for areal velocity is

A

dAdtωr\frac { d A } { d t } \propto \omega r

B

dAdtω2r\frac { d A } { d t } \propto \omega ^ { 2 } r

C

dAdtωr2\frac { d A } { d t } \propto \omega r ^ { 2 }

D

dAdtωr\frac { d A } { d t } \propto \sqrt { \omega r }

Answer

dAdtωr2\frac { d A } { d t } \propto \omega r ^ { 2 }

Explanation

Solution

=mvr2m= \frac { m v r } { 2 m } =12ωr2= \frac { 1 } { 2 } \omega r ^ { 2 }

[As Angular momentum L=mvrL = m v rand v = rω ]

dAdtωr2\frac { d A } { d t } \propto \omega r ^ { 2 }.