Solveeit Logo

Question

Question: In order that the function f(x) = (x + 1)<sup>cotx</sup> is continuous at x = 0, f(0) must be define...

In order that the function f(x) = (x + 1)cotx is continuous at x = 0, f(0) must be defined as

A

0

B

e

C

23\frac{2}{3}

D

None of these

Answer

e

Explanation

Solution

limx0f(x)=limx0(x+1)cotx\lim _ { x \rightarrow 0 } f ( x ) = \lim _ { x \rightarrow 0 } ( x + 1 ) ^ { \cot x }(1 form)

or limx0f(x)=limx0[(1+x)1/x]xtanx=e1\lim _ { x \rightarrow 0 } f ( x ) = \lim _ { x \rightarrow 0 } \left[ ( 1 + x ) ^ { 1 / x } \right] ^ { \frac { x } { \tan x } } = e ^ { 1 } ⇒ f(0) = e