Solveeit Logo

Question

Question: In order that the function \(f(x) = \frac{2}{x - 3},g(x) = \frac{x - 3}{x + 4}\) is continuous at \(...

In order that the function f(x)=2x3,g(x)=x3x+4f(x) = \frac{2}{x - 3},g(x) = \frac{x - 3}{x + 4} is continuous at h(x)=2(2x+1)x2+x12h(x) = - \frac{2(2x + 1)}{x^{2} + x - 12}, limx3[f(x)+g(x)+h(x)]\lim_{x \rightarrow 3}\lbrack f(x) + g(x) + h(x)\rbrack must be defined as

A

27- \frac{2}{7}

B

limn[n!nn]1/n\lim_{n \rightarrow \infty}\left\lbrack \frac{n!}{n^{n}} \right\rbrack^{1/n}

C

1e\frac{1}{e}

D

None of these

Answer

1e\frac{1}{e}

Explanation

Solution

For continuity at 0, we must have f(0)=limx0f(x)f ( 0 ) = \lim _ { x \rightarrow 0 } f ( x )

=limx0(x+1)cotx= \lim _ { x \rightarrow 0 } ( x + 1 ) ^ { \cot x } =limx0{(1+x)1x}xcotx= \lim _ { x \rightarrow 0 } \left\{ ( 1 + x ) ^ { \frac { 1 } { x } } \right\} ^ { x \cot x } =limx0{(1+x)1x}limx0(xtanx)= \lim _ { x \rightarrow 0 } \left\{ ( 1 + x ) ^ { \frac { 1 } { x } } \right\} ^ { \lim _ { x \rightarrow 0 } \left( \frac { x } { \tan x } \right) } =e1=e= e ^ { 1 } = e.