Solveeit Logo

Question

Physics Question on rotational motion

In non uniform circular motion, the ratio of tangential to radial acceleration is (r = radius of circle, v=v = speed of the particle, α=\alpha = angular acceleration)

A

α2r2v\frac{\alpha^{2} r^{2}}{v }

B

α2rv2\frac{\alpha^{2} r}{v^2}

C

αr2v2\frac{\alpha r^{2}}{v^{2} }

D

v2αr2\frac{v^{2}}{\alpha r^{2}}

Answer

αr2v2\frac{\alpha r^{2}}{v^{2} }

Explanation

Solution

Given, radius of circle =r=r
Speed of particle =v=v
Angular acceleration =α=\alpha
We know that,
tangential acceleration =αr...(i)=\alpha r \,\,\,\,\,\,\, ...(i)
Radial acceleration =v2r...(ii)=\frac{v^{2}}{r} \,\,\,\,\,\,\, ...(ii)
On dividing E (i) by E (ii), we get
 Tangential acceleration  Radial acceleration =αrv2×r=αr2v2\frac{\text { Tangential acceleration }}{\text { Radial acceleration }}=\frac{\alpha r}{v^{2}} \times r=\frac{\alpha r^{2}}{v^{2}}