Solveeit Logo

Question

Mathematics Question on Binomial theorem

In nn is an odd positive integer and (1+x+x2+x3)n=r=03narxr(1+x +x^2 +x^3)^n =\displaystyle\sum_{r=0}^{3n} a_rx^r then a0a1+a2a3+a3na_0 -a_1+a_2-a_3 +\dots -a_{3n} is equal to

A

4n4^n

B

11

C

1-1

D

00

Answer

00

Explanation

Solution

Given, (1+x+x2+x3)n=r=03narxr\left(1+x+x^{2}+x^{3}\right)^{n}=\displaystyle \sum_{r=0}^{3 n} a_{r} x^{r} and nn is an
odd positive integer.
[(1+x)(1+x2)]n=r=03narxr\Rightarrow {\left[(1+x)\left(1+x^{2}\right)\right]^{n}=\displaystyle\sum_{r=0}^{3 n} a_{r} x^{r}}
(1+x)n(1+x2)n=r=03narxr\Rightarrow (1+x)^{n}\left(1+x^{2}\right)^{n}=\displaystyle\sum_{r=0}^{3 n} a_{r} x^{r}
If we take n=1n=1,
(1+x+x2+x3)=r=03arxr\left(1+x+x^{2}+x^{3}\right)=\displaystyle\sum_{r=0}^{3} a_{r} x^{r}
=a0+a1x+a2x2+a3x3=a_{0}+a_{1} x +a_{2} x^{2}+a_{3} x^{3}
On comparing both sides,
a0=1,a1=1,a2=1,a3=1a_{0}=1,\, a_{1}=1,\, a_{2}=1,\, a_{3}=1...(i)
If we take n=3n=3,
(1+x)3(1+x2)3=r=09arxr(1+x)^{3}\left(1+x^{2}\right)^{3}=\displaystyle\sum_{r=0}^{9} a_{r} x^{r}
(1+x3+3x2+3x)(1+x6+3x4+3x2)\left(1+x^{3}+3 x^{2}+3 x\right)\left(1+x^{6}+3 x^{4}+3 x^{2}\right)
=r=09arxr(1+x3+3x2+3x+x6+x9=\displaystyle\sum_{r=0}^{9} a_{r} x^{r}\left(1+x^{3}+3 x^{2}+3 x +x^{6}+x^{9}\right.
+3x8+3x7+3x4+3x7+9x6+3 x^{8}+3 x^{7}+3 x^{4}+3 x^{7}+9 x^{6}
+9x5+3x2+3x5+9x4+9x3)\left.+9 x^{5}+3 x^{2}+3 x^{5}+9 x^{4}+9 x^{3}\right)
=r=09arxr(1+3x+6x2+10x3+12x4=\displaystyle\sum_{r=0}^{9} a_{r} x^{r}\left(1+3 x+6 x^{2}+10 x^{3}+12 x^{4}\right.
+12x5+10x6+6x7+3x8+x9)\left.+12 x^{5}+10 x^{6}+6 x^{7}+3 x^{8}+x^{9}\right)
=r=09arxr=\displaystyle\sum_{r=0}^{9} a_{r} x^{r}
On comparing the coefficient of xx on both sides;
a0=1,a1=3,a2=6,a3=10,a4=12,a5=12a_{0}=1,\, a_{1}=3,\, a_{2}=6,\, a_{3}=10,\, a_{4}=12,\, a_{5}=12
a6=10,a7=6,a8=3,a9=1a_{6}=10,\, a_{7}=6,\, a_{8}=3,\, a_{9}=1...(ii)
From E (i), we see that,
a0a1+a2a3=0,a_{0}-a_{1}+a_{2}-a_{3}=0, when n=1n=1
From E (ii), we see that,
a0a1+a2a3+a4a5+a6a7+a8a9=0a_{0}-a_{1}+a_{2}-a_{3}+a_{4}-a_{5}+ a_{6}-a_{7} +a_{8}-a_{9}=0
when n=3n=3
Similarly, for each odd terms:
a0a1+a2a3+...a3n=0a_{0}-a_{1}+a_{2}-a_{3}+...-a_{3 n}=0