Question
Mathematics Question on Binomial theorem
In n is an odd positive integer and (1+x+x2+x3)n=r=0∑3narxr then a0−a1+a2−a3+⋯−a3n is equal to
4n
1
−1
0
0
Solution
Given, (1+x+x2+x3)n=r=0∑3narxr and n is an
odd positive integer.
⇒[(1+x)(1+x2)]n=r=0∑3narxr
⇒(1+x)n(1+x2)n=r=0∑3narxr
If we take n=1,
(1+x+x2+x3)=r=0∑3arxr
=a0+a1x+a2x2+a3x3
On comparing both sides,
a0=1,a1=1,a2=1,a3=1...(i)
If we take n=3,
(1+x)3(1+x2)3=r=0∑9arxr
(1+x3+3x2+3x)(1+x6+3x4+3x2)
=r=0∑9arxr(1+x3+3x2+3x+x6+x9
+3x8+3x7+3x4+3x7+9x6
+9x5+3x2+3x5+9x4+9x3)
=r=0∑9arxr(1+3x+6x2+10x3+12x4
+12x5+10x6+6x7+3x8+x9)
=r=0∑9arxr
On comparing the coefficient of x on both sides;
a0=1,a1=3,a2=6,a3=10,a4=12,a5=12
a6=10,a7=6,a8=3,a9=1...(ii)
From E (i), we see that,
a0−a1+a2−a3=0, when n=1
From E (ii), we see that,
a0−a1+a2−a3+a4−a5+a6−a7+a8−a9=0
when n=3
Similarly, for each odd terms:
a0−a1+a2−a3+...−a3n=0