Question
Question: In \(n = (1999)!\) then \(\sum_{x = 1}^{1999}{\log_{n}x}\) is equal to....
In n=(1999)! then ∑x=11999lognx is equal to.
A
1
B
0
C
19991999
D
– 1
Answer
1
Explanation
Solution
21(en+e−n)
1+2!1+2+3!1+2+3+4!1+2+3+4+....∞=e.
In n=(1999)! then ∑x=11999lognx is equal to.
1
0
19991999
– 1
1
21(en+e−n)
1+2!1+2+3!1+2+3+4!1+2+3+4+....∞=e.