Solveeit Logo

Question

Question: In \(n = (1999)!\) then \(\sum_{x = 1}^{1999}{\log_{n}x}\) is equal to....

In n=(1999)!n = (1999)! then x=11999lognx\sum_{x = 1}^{1999}{\log_{n}x} is equal to.

A

1

B

0

C

19991999\sqrt[1999]{1999}

D

– 1

Answer

1

Explanation

Solution

12(en+en)\frac{1}{2}(e^{n} + e^{- n})

1+1+22!+1+2+33!+1+2+3+44!+....=e1 + \frac{1 + 2}{2!} + \frac{1 + 2 + 3}{3!} + \frac{1 + 2 + 3 + 4}{4!} + ....\infty = e.