Question
Question: In \(\sin ^ { 2 } \frac { A } { 2 } , \sin ^ { 2 } \frac { B } { 2 } , \sin ^ { 2 } \frac { C } { 2 ...
In sin22A,sin22B,sin22C be in H. P. then a, b, c will be in.
A
A. P.
B
G. P.
C
H. P.
D
None of these
Answer
H. P.
Explanation
Solution
sin22A1,sin22B1,sin22C1are in A. P.
⇒ sin22C1−sin22B1=sin22B1−sin22A1
⇒ (s−a)(s−b)ab−(s−a)(s−c)ac
=(s−a)(s−c)ac−(s−b)(s−c)bc
⇒ (s−aa)((s−b)(s−c)b(s−c)−c(s−b)) =(s−cc)((s−a)(s−b)a(s−b)−b(s−a))
⇒ abs−abc−acs+abc=acs−abc−bcs+abc
⇒ ab−ac=ac−bc⇒ab+bc=2ac
or c1+a1=b2 , i.e., a,b,c are in H. P.
Note : Students should remember this question as a fact.