Solveeit Logo

Question

Physics Question on Alternating current

In LCRLCR circuit f=50πHz,V=50volt,R=300Ω {f = \frac{ 50 }{ \pi} \, Hz, V = 50 \, volt, R = 300 \, \Omega} . If L=1HL = 1 \, H and C=20μCC = 20 \, \mu \, C, then voltage across capacitor is

A

zero

B

20 V

C

30 V

D

50 V

Answer

50 V

Explanation

Solution

For an L-C-R circuit the impedance (Z) is given by

Z = R2+(XLXC)2\sqrt{ R^2 + ( X_L - X_C)^2 }
where XL=ωL=2πfLX_L = \omega L = 2 \pi f L
and XC=1ωC=12πfCX_C = \frac{ 1}{ \omega C} = \frac{ 1} { 2 \pi f C}
Given, f = 50πHz,R=300Ω,L=1H \frac{ 50}{ \pi} \, Hz, R = 300 \Omega, \, L = 1 H,
and C = 20 μC=20×106\mu \, C = 20 \times 10^{ - 6 } C
Z=(300)2+(2π×50π×112π×50π×20×106)\therefore Z = \sqrt{ ( 300)^2 + \Bigg( 2 \pi \times \frac{ 50}{ \pi} \times 1 - \frac{ 1}{ 2 \pi \times \frac{ 50}{ \pi} \times 20 \times 10^{ - 6} } \Bigg) }
Z = 90,000+(100500)2\sqrt{ 90,000 + ( 100 - 500)^2 }
Z = 90,000+16,0000=500Ω \sqrt{ 90,000 + 16, 0000 } = 500 \Omega
Hence, current in circuit is given by
i = VZ=50500\frac{ V}{ Z} = \frac{ 50}{ 500}
= 0.1 A
Voltage across capacitor is,
VC=iXC=12πfC=0.12π×50π×20×106V_C = i X_C = \frac{ 1}{ 2 \pi f C} = \frac{ 0.1}{ 2 \pi \times \frac{ 50}{ \pi} \times 20 \times 10^{ - 6} }
= 0.1×106100×20\frac{ 0.1 \times 10^6 }{ 100 \times 20 }
VC=50V\Rightarrow V_C = 50 \,V