Solveeit Logo

Question

Question: In \(\triangle A B C\) if \(( a + b + c ) ( a - b + c )\)=3ac, then....

In ABC\triangle A B C if (a+b+c)(ab+c)( a + b + c ) ( a - b + c )=3ac, then.

A

B=60\angle B = 60 ^ { \circ }

B

B=30\angle B = 30 ^ { \circ }

C

C=60\angle C = 60 ^ { \circ }

D

A+C=90\angle A + \angle C = 90 ^ { \circ }

Answer

B=60\angle B = 60 ^ { \circ }

Explanation

Solution

(a+c)2b2=3aca2+c2b2=ac( a + c ) ^ { 2 } - b ^ { 2 } = 3 a c \Rightarrow a ^ { 2 } + c ^ { 2 } - b ^ { 2 } = a c

But cosB=a2+c2b22ac=12B=π3\cos B = \frac { a ^ { 2 } + c ^ { 2 } - b ^ { 2 } } { 2 a c } = \frac { 1 } { 2 } \Rightarrow B = \frac { \pi } { 3 }.