Solveeit Logo

Question

Question: In \(\triangle A B C\), \(\left( \cot \frac { A } { 2 } + \cot \frac { B } { 2 } \right) \left( a \s...

In ABC\triangle A B C, (cotA2+cotB2)(asin2B2+bsin2A2)\left( \cot \frac { A } { 2 } + \cot \frac { B } { 2 } \right) \left( a \sin ^ { 2 } \frac { B } { 2 } + b \sin ^ { 2 } \frac { A } { 2 } \right)equal to

A

cotC\cot C

B

ccotCc \cot C

C

cotC2\cot \frac { C } { 2 }

D

ccotC2c \cot \frac { C } { 2 }

Answer

ccotC2c \cot \frac { C } { 2 }

Explanation

Solution

{cotA2+cotB2}{asin2B2+bsin2A2}\left\{ \cot \frac { A } { 2 } + \cot \frac { B } { 2 } \right\} \left\{ a \sin ^ { 2 } \frac { B } { 2 } + b \sin ^ { 2 } \frac { A } { 2 } \right\} ={cosC2sinA2sinB2}{asin2B2+bsin2A2}= \left\{ \frac { \cos \frac { C } { 2 } } { \sin \frac { A } { 2 } \sin \frac { B } { 2 } } \right\} \left\{ a \sin ^ { 2 } \frac { B } { 2 } + b \sin ^ { 2 } \frac { A } { 2 } \right\} ={cosC2}{asinB2sinA2+bsinA2sinB2}= \left\{ \cos \frac { C } { 2 } \right\} \left\{ a \frac { \sin \frac { B } { 2 } } { \sin \frac { A } { 2 } } + b \frac { \sin \frac { A } { 2 } } { \sin \frac { B } { 2 } } \right\}

=s(sc)ab{a(sa)(sc)ac(sb)(sc)bc+b(sb)(sc)bc(sa)(sc)ac}= \sqrt { \frac { s ( s - c ) } { a b } } \left\{ a \frac { \sqrt { \frac { ( s - a ) ( s - c ) } { a c } } } { \sqrt { \frac { ( s - b ) ( s - c ) } { b c } } } + b \frac { \sqrt { \frac { ( s - b ) ( s - c ) } { b c } } } { \sqrt { \frac { ( s - a ) ( s - c ) } { a c } } } \right\} =s(sc)ab{(sasb)ab+(sbsa)ab}= \sqrt { \frac { s ( s - c ) } { a b } } \left\{ \sqrt { \left( \frac { s - a } { s - b } \right) a b } + \sqrt { \left( \frac { s - b } { s - a } \right) a b } \right\} =s(sc){sa+sb(sa)(sb)}=s(sc){2sab(sa)(sb)}= \sqrt { s ( s - c ) } \left\{ \frac { s - a + s - b } { \sqrt { ( s - a ) ( s - b ) } } \right\} = \sqrt { s ( s - c ) } \left\{ \frac { 2 s - a - b } { \sqrt { ( s - a ) ( s - b ) } } \right\} =cs(sc)(sa)(sb)=ccotC2= c \sqrt { \frac { s ( s - c ) } { ( s - a ) ( s - b ) } } = c \cot \frac { C } { 2 } .

Trick : Such type of unconditional problems can be checked by putting the particular values for a=1a = 1 , b=3b = \sqrt { 3 } , c=2c = 2 and A=30A = 30 ^ { \circ } , B=60B = 60 ^ { \circ }, C=90C = 90 ^ { \circ } , Here expression is equal to 2 which is given by (4).