Solveeit Logo

Question

Quantitative Aptitude Question on Integers

In how many ways can a pair of integers (x,a)(x , a) be chosen such that x22x+a2=0x^2-2|x|+|a-2|=0 ?

A

4

B

5

C

6

D

7

Answer

7

Explanation

Solution

The correct answer is (D): 77

x22x+a2=0x^2-2|x|+|a-2|=0

x=2±44(a2)2|x|=\frac{2±\sqrt{4-4(|a-2|})}{2}

x=1±1a2|x|=1±\sqrt{1-|a-2|}

If a>2;a2=a2a>2;|a-2|=a-2

x=1±1(a2)|x|=1±\sqrt{1-(a-2)}

= 1±3a1±\sqrt{3-a}

since xx is integer 3a03-a≥0

a3a≤3

The possible values of aa is = 33

Then x=±1x = ±1;

If a=2,x=1±1,x=±2,0a=2,|x|=|1±1|,⇒x=±2,0

If a<2,a2=2aa<2,|a-2|=2-a

x=1±1(2a)|x|=1±\sqrt{1-(2-a)}

x=1±a1|x|=1±\sqrt{a-1}

Since xx is integer a10a1a-1≥0⇒a≥1

The possible values of aa is 11

If a=1,x=1x=±1a=1,|x|=1⇒x=±1

The possible pairs =(1,3),(1,3),(1,1),(1,1),(2,2),(2,2),(0,2)(-1,3),(1,3),(1,1),(-1,1),(2,2),(-2,2),(0,2)i.e.,77