Question
Quantitative Aptitude Question on Integers
In how many ways can a pair of integers (x,a) be chosen such that x2−2∣x∣+∣a−2∣=0 ?
A
4
B
5
C
6
D
7
Answer
7
Explanation
Solution
The correct answer is (D): 7
x2−2∣x∣+∣a−2∣=0
∣x∣=22±4−4(∣a−2∣)
∣x∣=1±1−∣a−2∣
If a>2;∣a−2∣=a−2
∣x∣=1±1−(a−2)
= 1±3−a
since x is integer 3−a≥0
a≤3
The possible values of a is = 3
Then x=±1;
If a=2,∣x∣=∣1±1∣,⇒x=±2,0
If a<2,∣a−2∣=2−a
∣x∣=1±1−(2−a)
∣x∣=1±a−1
Since x is integer a−1≥0⇒a≥1
∴ The possible values of a is 1
If a=1,∣x∣=1⇒x=±1
∴ The possible pairs =(−1,3),(1,3),(1,1),(−1,1),(2,2),(−2,2),(0,2)i.e.,7