Solveeit Logo

Question

Question: In \[{{H}_{2}}\] gas process \[\text{P}{{\text{V}}^{\text{2}}}\text{= Constant}\].Then ratio of work...

In H2{{H}_{2}} gas process PV2= Constant\text{P}{{\text{V}}^{\text{2}}}\text{= Constant}.Then ratio of work done by gas to change in its internal energy is
A. 23\dfrac{2}{3}
B. 0.40.4
C. 0.4-0.4
D. 23-\dfrac{2}{3}

Explanation

Solution

Since PV2= Constant\text{P}{{\text{V}}^{\text{2}}}\text{= Constant},it is polytropic process. Hence we can use the formula for work done in a polytropic process. Also have equation for internal energy of a diatomic molecule. Using both the formulas, the ratio of work done by hydrogen gas to change in its internal energy can be calculated.
Formula used:
Work done by the gas, W =V1V2Pdv\text{Work done by the gas, W =}\int\limits_{{{\text{V}}_{\text{1}}}}^{{{\text{V}}_{\text{2}}}}{\text{Pdv}}
PV=nRTPV=nRT
Internal energy, U=52nRT\text{Internal energy, U=}\dfrac{\text{5}}{\text{2}}\text{nRT}

Complete answer:
Given,
PV2=KP{{V}^{2}}=K -------- 1
Where,
P = Pressure of the system\text{P = Pressure of the system}
V = Volume of the gas\text{V = Volume of the gas}
K = constant\text{K = constant}
Hence it is a polytropic process.
Then,
P=KV2P=\dfrac{K}{{{V}^{2}}} ------- 2
For a polytropic process,
Work done by the gas, W =V1V2Pdv\text{Work done by the gas, W =}\int\limits_{{{\text{V}}_{\text{1}}}}^{{{\text{V}}_{\text{2}}}}{\text{Pdv}} --------- 3
Substitute equation 2 in 3. Then,
W=V1V2KV2dv=V1V2KdvV2W=\int\limits_{{{V}_{1}}}^{{{V}_{2}}}{\dfrac{K}{{{V}^{2}}}dv}=\int\limits_{{{V}_{1}}}^{{{V}_{2}}}{K\dfrac{dv}{{{V}^{2}}}}
W=K[1V]V1V2=K[1V21V1]=KV2+KV1W=K\left[ \dfrac{-1}{V} \right]_{{{V}_{1}}}^{{{V}_{2}}}=-K\left[ \dfrac{1}{{{V}_{2}}}-\dfrac{1}{{{V}_{1}}} \right]=-\dfrac{K}{{{V}_{2}}}+\dfrac{K}{{{V}_{1}}}------- 4
Substitute equation 1 in 4. We get,
W=P2V22V2+P1V12V1=P2V2+P1V1W=\dfrac{-{{P}_{2}}V_{2}^{2}}{{{V}_{2}}}+\dfrac{{{P}_{1}}V_{1}^{2}}{{{V}_{1}}}=-{{P}_{2}}{{V}_{2}}+{{P}_{1}}{{V}_{1}}--------- 5
We have,
PV=nRTPV=nRT ------ 6
Where,
n = No. of moles\text{n = No}\text{. of moles}
T = Temperature\text{T = Temperature}
R = Ideal gas constant = 8.314 J/mol\text{R = Ideal gas constant = 8}\text{.314 J/mol}
Substituting 6 in equation 5, we get,
W=nRT2+nRT1=(nRT2nRT1)W=-nR{{T}_{2}}+nR{{T}_{1}}=-\left( nR{{T}_{2}}-nR{{T}_{1}} \right)
W=nRΔTW=-nR\Delta T
For a diatomic molecule,
Internal energy, U=52nRT\text{Internal energy, U=}\dfrac{\text{5}}{\text{2}}\text{nRT}
Therefore,
Change in internal energy, !!Δ!! U=52nR !!Δ!! T\text{Change in internal energy, }\\!\\!\Delta\\!\\!\text{ U=}\dfrac{\text{5}}{\text{2}}\text{nR }\\!\\!\Delta\\!\\!\text{ T}
Then,
WΔU=nRΔT52nRΔT\dfrac{W}{\Delta U}=\dfrac{-nR\Delta T}{\dfrac{5}{2}nR\Delta T}
WΔU=25=0.4\dfrac{W}{\Delta U}=-\dfrac{2}{5}=-0.4

So, the correct answer is “Option C”.

Additional Information:
A polytropic process is any thermodynamic process which can be expressed as,
PVn = Constant\text{P}{{\text{V}}^{\text{n}}}\text{ = Constant}. The polytropic process can be described as the expansion and compression of a gas which includes heat transfer. Here, the exponent nn is known as the polytropic index, and it can take up any value from0 to \text{0 to }\infty , depending on the process.

Note:
Here in the expression of a polytropic process, n is known as polytropic index. Depending on the process, its values may vary from 0 to \text{0 to }\infty . As the value of nn approaches \infty , pressure has less influence; when n = \text{n = }\infty , pressure has no influence. Hence, we have an isobaric process.
For an irreversible process, we cannot use the same formula for calculating the work done, which we use in a reversible process.