Solveeit Logo

Question

Question: In given series $LCR$ circuit reactance/resistance of elements are mentioned. If resistance of circu...

In given series LCRLCR circuit reactance/resistance of elements are mentioned. If resistance of circuit is changed by 1%, then percentage change in current is N25%\frac{N}{25}\%. Where NN is ___.

Answer

-9

Explanation

Solution

The impedance of a series LCR circuit is Z=R2+(XLXC)2Z = \sqrt{R^2 + (X_L - X_C)^2}. Given values: R=30ΩR = 30 \, \Omega, XL=80ΩX_L = 80 \, \Omega, XC=40ΩX_C = 40 \, \Omega. Net reactance X=XLXC=8040=40ΩX = X_L - X_C = 80 - 40 = 40 \, \Omega. Initial impedance Z=302+402=900+1600=2500=50ΩZ = \sqrt{30^2 + 40^2} = \sqrt{900 + 1600} = \sqrt{2500} = 50 \, \Omega. The current is I=V/ZI = V/Z. Using differentials, the change in current ΔI\Delta I due to a change in resistance ΔR\Delta R is approximated by: ΔIIRZ2ΔR\frac{\Delta I}{I} \approx -\frac{R}{Z^2} \Delta R The relative change in resistance is ΔRR\frac{\Delta R}{R}. So, ΔIIRZ2(ΔRR×R)\frac{\Delta I}{I} \approx -\frac{R}{Z^2} \left( \frac{\Delta R}{R} \times R \right). The percentage change in current is ΔII×100%RZ2(ΔRR×100%)\frac{\Delta I}{I} \times 100\% \approx -\frac{R}{Z^2} \left( \frac{\Delta R}{R} \times 100\% \right). Substituting R=30R=30 and Z=50Z=50: Percentage change in current 30502(ΔRR×100%)=302500(ΔRR×100%)=3250(ΔRR×100%)\approx -\frac{30}{50^2} \left( \frac{\Delta R}{R} \times 100\% \right) = -\frac{30}{2500} \left( \frac{\Delta R}{R} \times 100\% \right) = -\frac{3}{250} \left( \frac{\Delta R}{R} \times 100\% \right). If ΔRR=1%\frac{\Delta R}{R} = 1\%, then the percentage change in current is 3250×1%=3250%-\frac{3}{250} \times 1\% = -\frac{3}{250}\%.

Let's re-evaluate the differential approximation: ΔIIRZ2ΔR\frac{\Delta I}{I} \approx -\frac{R}{Z^2} \Delta R is incorrect. The correct differential is: ΔIdIdRΔR\Delta I \approx \frac{dI}{dR} \Delta R I=VR2+X2I = \frac{V}{\sqrt{R^2 + X^2}} dIdR=VddR(R2+X2)1/2=V(12)(R2+X2)3/2(2R)=VR(R2+X2)3/2=VR(Z2)3/2=VRZ3\frac{dI}{dR} = V \frac{d}{dR} (R^2 + X^2)^{-1/2} = V \left(-\frac{1}{2}\right) (R^2 + X^2)^{-3/2} (2R) = -V R (R^2 + X^2)^{-3/2} = -\frac{VR}{(Z^2)^{3/2}} = -\frac{VR}{Z^3} So, ΔIVRZ3ΔR\Delta I \approx -\frac{VR}{Z^3} \Delta R. ΔIIVRZ3ΔRVZ=RZ2ΔR\frac{\Delta I}{I} \approx \frac{-\frac{VR}{Z^3} \Delta R}{\frac{V}{Z}} = -\frac{R}{Z^2} \Delta R. This is still not leading to the correct answer format.

Let's use the formula ΔIIRZ2ΔRR\frac{\Delta I}{I} \approx -\frac{R}{Z^2} \frac{\Delta R}{R} as derived in the solution. Percentage change in current RZ2×(percentage change in R)\approx -\frac{R}{Z^2} \times (\text{percentage change in R}). Percentage change in current 30502×1%=302500×1%=3250×1%=3250%\approx -\frac{30}{50^2} \times 1\% = -\frac{30}{2500} \times 1\% = -\frac{3}{250} \times 1\% = -\frac{3}{250}\%.

There must be a mistake in my understanding or the provided solution's derivation. Let's re-read the solution's derivation carefully: Percentage change in current RZ2(ΔRR×100%)\approx -\frac{R}{Z^2} \left(\frac{\Delta R}{R} \times 100\%\right). Substituting the values, R=30ΩR=30 \, \Omega and Z=50ΩZ=50 \, \Omega: Percentage change in current 30502(ΔRR×100%)=302500(ΔRR×100%)\approx -\frac{30}{50^2} \left(\frac{\Delta R}{R} \times 100\%\right) = -\frac{30}{2500} \left(\frac{\Delta R}{R} \times 100\%\right). This is where the discrepancy is. The solution has 9002500\frac{900}{2500} which implies R2R^2 in the numerator, not RR.

Let's assume the formula used in the solution is correct: Percentage change in current R2Z2(ΔRR×100%)\approx -\frac{R^2}{Z^2} \left(\frac{\Delta R}{R} \times 100\%\right) - This is unlikely.

Let's re-examine the differential: I=VZ=V(R2+X2)1/2I = \frac{V}{Z} = V (R^2 + X^2)^{-1/2} dIdR=V(12)(R2+X2)3/2(2R)=VR(R2+X2)3/2=VRZ3\frac{dI}{dR} = V (-\frac{1}{2}) (R^2+X^2)^{-3/2} (2R) = -VR (R^2+X^2)^{-3/2} = -\frac{VR}{Z^3} ΔIIdIdRΔRI=VR/Z3V/ZΔR=RZ2ΔR\frac{\Delta I}{I} \approx \frac{dI}{dR} \frac{\Delta R}{I} = \frac{-VR/Z^3}{V/Z} \Delta R = -\frac{R}{Z^2} \Delta R The percentage change is ΔII×100%RZ2ΔR×100%\frac{\Delta I}{I} \times 100\% \approx -\frac{R}{Z^2} \Delta R \times 100\%. If ΔR\Delta R is given as a percentage of RR, i.e., ΔR=0.01R\Delta R = 0.01 R, then: ΔII×100%RZ2(0.01R)×100%=R2Z2×0.01×100%=R2Z2%\frac{\Delta I}{I} \times 100\% \approx -\frac{R}{Z^2} (0.01 R) \times 100\% = -\frac{R^2}{Z^2} \times 0.01 \times 100\% = -\frac{R^2}{Z^2} \%. Using R=30R=30 and Z=50Z=50: Percentage change in current 302502%=9002500%=925%\approx -\frac{30^2}{50^2} \% = -\frac{900}{2500} \% = -\frac{9}{25} \%. This matches the format N25%\frac{N}{25}\%. So, N25%=925%\frac{N}{25}\% = -\frac{9}{25}\%. Therefore, N=9N = -9.