Solveeit Logo

Question

Question: In given figure, a wire loop has been bent so that it has three segments AB (a quarter circle), BC (...

In given figure, a wire loop has been bent so that it has three segments AB (a quarter circle), BC (a square corner) & CA (straight). Here are three choices for a magnetic field through the loop-

(1) B1=3i^+7j^5tk^\overset{\rightarrow}{B_{1}} = 3\widehat{i} + 7\widehat{j}–5t\widehat{k} (2) B2=5ti^4j^15k^\overset{\rightarrow}{B_{2}} = 5t\widehat{i}–4\widehat{j}–15\widehat{k}

(3) B3=2i^5tj^12k^\overset{\rightarrow}{B_{3}} = 2\widehat{i}–5t\widehat{j}–12\widehat{k}

where B is in milli tesla and t is in second if the induced current in the loop due to B1,B2,B3\overset{\rightarrow}{B_{1}},\overset{\rightarrow}{B_{2}},\overset{\rightarrow}{B_{3}} are i1, i2, i3 respectively, then -

A

i1 > i2 > i3

B

i2 > i1 > i3

C

i3 > i2 > i1

D

i1 = i2 = i3

Answer

i2 > i1 > i3

Explanation

Solution

i1 = dφ1dt1R=1R×ddt(B1×Area)=ddt[5t×πa24]×1R=5πa24R\frac{d\varphi_{1}}{dt}\frac{1}{R} = \frac{1}{R} \times \frac{d}{dt}(B_{1} \times Area) = \frac{d}{dt}\left\lbrack 5t \times \frac{\pi a^{2}}{4} \right\rbrack \times \frac{1}{R} = \frac{5\pi a^{2}}{4R}

i2 = dφ2dt×1R=d[5a2t]dt×1R=5a2R\frac{d\varphi_{2}}{dt} \times \frac{1}{R} = \frac{d\lbrack 5a^{2}t\rbrack}{dt} \times \frac{1}{R} = \frac{5a^{2}}{R}

i3 = dφ3dt×1R=d[0.5a2]dt×1R=a22R\frac{d\varphi_{3}}{dt} \times \frac{1}{R} = \frac{d\lbrack 0.5a^{2}\rbrack}{dt} \times \frac{1}{R} = \frac{a^{2}}{2R}

\ i2 > i1 > i3