Solveeit Logo

Question

Question: In figure, the coefficient of friction between the floor and the block B is 0.1. The coefficient of ...

In figure, the coefficient of friction between the floor and the block B is 0.1. The coefficient of friction between the blocks B and A is 0.2. The mass of a is m/2 and of B is m. What is the maximum horizontal force F can be applied to the block B so that two blocks move together?

A

0.15 mg

B

0.05 mg

C

0.1 mg

D

0.45 mg

Answer

0.45 mg

Explanation

Solution

Here mA=m2,mB=mm _ { A } = \frac { m } { 2 } , m _ { B } = m

μA=0.2,μB=0.1\mu _ { A } = 0.2 , \mu _ { B } = 0.1

Let both the blocks are moving with common acceleration a then

a=μAmAgmA=μAg=0.2ga = \frac { \mu _ { A } m _ { A } g } { m _ { A } } = \mu _ { A } g = 0.2 g

And FμB(mB+mA)g=(mB+mA)aF - \mu _ { B } \left( m _ { B } + m _ { A } \right) g = \left( m _ { B } + m _ { A } \right) a F=(mB+mA)a+μB(mB+mA)gF = \left( m _ { B } + m _ { A } \right) a + \mu _ { B } \left( m _ { B } + m _ { A } \right) g =(m+m2)(0.2g)+(0.1)(m+m2)g= \left( m + \frac { m } { 2 } \right) ( 0.2 g ) + ( 0.1 ) \left( m + \frac { m } { 2 } \right) g =(32m)(0.2g)+(32m)(0.1g)=0.92mg=0.45mg= \left( \frac { 3 } { 2 } m \right) ( 0.2 g ) + \left( \frac { 3 } { 2 } m \right) ( 0.1 g ) = \frac { 0.9 } { 2 } m g = 0.45 m g