Solveeit Logo

Question

Mathematics Question on Number of Tangents from a Point on a Circle

In Fig. 10.11, if TP and TQ are the two tangents to a circle with centre O so that ∠POQ = 110°, then ∠PTQ is equal toa circle with the two tangents TP and TQFig. 10.11

A

60°

B

70°

C

80°

D

90°

Answer

70°

Explanation

Solution

It is given that TP\text {TP} and TQ\text {TQ} are tangents.
Therefore, radius drawn to these tangents will be perpendicular to the tangents.
Thus, OP ⊥ TP \text {OP ⊥ TP } and OQ ⊥ TQ\text {OQ ⊥ TQ}
OPT=90º∠OPT = 90º
OQT=90º∠OQT = 90º
In quadrilateral POQTPOQT,
Sum of all interior angles =360º= 360º
OPT+POQ+OQT+PTQ=360º∠OPT + ∠POQ +∠OQT + ∠PTQ = 360º
90º+110º+90º+PTQ=360º⇒ 90º + 110º + 90º + PTQ = 360º
PTQ=70º⇒ PTQ = 70º

Hence, the correct option is (B): 70º70º