Solveeit Logo

Question

Question: In \(\Delta ABC\), right-angled at \(B\), \(AB = 24{\text{ cm, }}BC = 7{\text{ cm}}\). Determine: ...

In ΔABC\Delta ABC, right-angled at BB, AB=24 cm, BC=7 cmAB = 24{\text{ cm, }}BC = 7{\text{ cm}}. Determine:
(i) sinA, cosA \sin A,{\text{ }}\cos A{\text{ }}
(ii) sinC, cosC \sin C,{\text{ }}\cos C{\text{ }}

Explanation

Solution

First calculate the third side of the triangle by applying Pythagoras Theorem for right angled triangle, c2=a2+b2{c^2} = {a^2} + {b^2}, where cc is the length of the hypotenuse and aa and bb are the lengths of other two sides. Then apply trigonometric formulas sinθ=PerpendicularHypotenuse\sin \theta = \dfrac{{{\text{Perpendicular}}}}{{{\text{Hypotenuse}}}} and cosθ=BaseHypotenuse\cos \theta = \dfrac{{{\text{Base}}}}{{{\text{Hypotenuse}}}} to calculate the required values.

Complete step-by-step answer:
According to the question, in a right angled triangle ΔABC\Delta ABC, right angled at BB, we have been given lengths of two sides.
AB=24 cm, BC=7 cm\Rightarrow AB = 24{\text{ cm, }}BC = 7{\text{ cm}}

We can apply Pythagoras Theorem to calculate the length of the third side. According to this theorem, in a right angled triangle, c2=a2+b2{c^2} = {a^2} + {b^2}, where cc is the length of the hypotenuse and aa and bb are the lengths of other two sides.
Applying this theorem, we’ll get:
AC2=AB2+BC2\Rightarrow A{C^2} = A{B^2} + B{C^2}
Putting values of ABAB and BCBC, we have:
AC2=(24)2+(7)2 AC2=576+49=625 AC=25 .....(1) \Rightarrow A{C^2} = {\left( {24} \right)^2} + {\left( 7 \right)^2} \\\ \Rightarrow A{C^2} = 576 + 49 = 625 \\\ \Rightarrow AC = 25{\text{ }}.....{\text{(1)}}
Also ACAC is the perpendicular for both the angles AA and CC as it is evident from the figure.
In the first case, we have to determine the values of sinA\sin A and cosA\cos A.
In the above diagram, for angle AA, base is ABAB and perpendicular is BCBC. Further, we know that sinθ=PerpendicularHypotenuse\sin \theta = \dfrac{{{\text{Perpendicular}}}}{{{\text{Hypotenuse}}}} and cosθ=BaseHypotenuse\cos \theta = \dfrac{{{\text{Base}}}}{{{\text{Hypotenuse}}}}. Using these formulas, we’ll get:
sinA=BCAC cosA=ABAC \Rightarrow \sin A = \dfrac{{BC}}{{AC}} \\\ \Rightarrow \cos A = \dfrac{{AB}}{{AC}}
Putting AB=24 cm, BC=7 cmAB = 24{\text{ cm, }}BC = 7{\text{ cm}} and AC=25 cmAC = 25{\text{ cm}}, we’ll get:
sinA=725 cosA=2425 \Rightarrow \sin A = \dfrac{7}{{25}} \\\ \Rightarrow \cos A = \dfrac{{24}}{{25}}
In the second case, we have to determine the values of sinC\sin C and cosC\cos C.
Again in the above diagram, for angle CC, base is BCBC and perpendicular is ABAB. Again applying the formulas sinθ=PerpendicularHypotenuse\sin \theta = \dfrac{{{\text{Perpendicular}}}}{{{\text{Hypotenuse}}}} and cosθ=BaseHypotenuse\cos \theta = \dfrac{{{\text{Base}}}}{{{\text{Hypotenuse}}}}, we’ll get:

sinC=ABAC cosC=BCAC \Rightarrow \sin C = \dfrac{{AB}}{{AC}} \\\ \Rightarrow \cos C = \dfrac{{BC}}{{AC}}

Putting AB=24 cm, BC=7 cmAB = 24{\text{ cm, }}BC = 7{\text{ cm}} and AC=25 cmAC = 25{\text{ cm}}, we’ll get:
sinC=2425 cosC=725 \Rightarrow \sin C = \dfrac{{24}}{{25}} \\\ \Rightarrow \cos C = \dfrac{7}{{25}}

So the required values are:
sinA=725 cosA=2425 sinC=2425 cosC=725 \Rightarrow \sin A = \dfrac{7}{{25}} \\\ \Rightarrow \cos A = \dfrac{{24}}{{25}} \\\ \Rightarrow \sin C = \dfrac{{24}}{{25}} \\\ \Rightarrow \cos C = \dfrac{7}{{25}}

Note: The formulas of first three trigonometric ratios are:
sinθ=PerpendicularHypotenuse, cosθ=BaseHypotenuse and tanθ=PerpendicularBase\Rightarrow \sin \theta = \dfrac{{{\text{Perpendicular}}}}{{{\text{Hypotenuse}}}},{\text{ }}\cos \theta = \dfrac{{{\text{Base}}}}{{{\text{Hypotenuse}}}}{\text{ and }}\tan \theta = \dfrac{{{\text{Perpendicular}}}}{{{\text{Base}}}}.
The other three trigonometric ratios are reciprocal of these three as shown below:
cosec=1sinθ, secθ=1cosθ and cotθ=1tanθ\Rightarrow \operatorname{cosec} = \dfrac{1}{{\sin \theta }},{\text{ }}\sec \theta = \dfrac{1}{{\cos \theta }}{\text{ and }}\cot \theta = \dfrac{1}{{\tan \theta }}.
Thus remembering the first three formulas and taking their reciprocal, we can determine all the six trigonometric ratios.