Solveeit Logo

Question

Question: In \(\Delta ABC\), let L, M, N be the feet of the altitudes. Then calculate \(\sin \left( \angle MLN...

In ΔABC\Delta ABC, let L, M, N be the feet of the altitudes. Then calculate sin(MLN)+sin(LMN)+sin(MNL)\sin \left( \angle MLN \right)+\sin \left( \angle LMN \right)+\sin \left( \angle MNL \right)
(a) 4sinAsinBsinC4\sin A\sin B\sin C
(b) 3sinAsinBsinC3\sin A\sin B\sin C
(c) 2sinAsinBsinC2\sin A\sin B\sin C
(d) sinAsinBsinC\sin A\sin B\sin C

Explanation

Solution

Hint:After drawing altitude we can join L, M, N to form a pedal triangle and use properties to change angles into A, B, C then use identities sin(πθ)=sinθ,cos(πθ)2cosθ\sin \left( \pi -\theta \right)=\sin \theta ,\cos \left( \pi -\theta \right)2\cos \theta
sinA+sinB=2sin(A+B)2cos(AB)2\sin A+\sin B=2\sin \dfrac{\left( A+B \right)}{2}\cos \dfrac{\left( A-B \right)}{2} and
cosAcosB=2sinA+B2sinθA2\cos A-\cos B=2\sin \dfrac{A+B}{2}\sin \theta \dfrac{-A}{2} and get results.

Complete step-by-step answer:
Let’s draw a triangle ABC with altitude AL, BM and CN and then join L, M, N to form a triangle LMN, as shown below:

Now we will say triangle LMN is a pedal triangle of triangle ABC. Pedal triangle is a triangle that is obtained by joining points lying on the three sides of the triangle.
So, by using the property of pedal triangle we can write,
i)MLN=1802×A\angle MLN={{180}^{\circ }}-2\times \angle A
ii) NML=1802×B\angle NML={{180}^{\circ }}-2\times \angle B
iii) MLN=1802×C\angle MLN={{180}^{\circ }}-2\times \angle C
Now we will find what is asked in the equation which is sin(MNL)+sin(NML)+sin(MNL)\sin \left( \angle MNL \right)+\sin \left( \angle NML \right)+\sin \left( \angle MNL \right) which can also be written as sin(1802×A)+sin(1802×B)+sin(1802×C)\sin \left( {{180}^{\circ }}-2\times \angle A \right)+\sin \left( {{180}^{\circ }}-2\times \angle B \right)+\sin \left( {{180}^{\circ }}-2\times \angle C \right)
Now we will use the identity,
sin(180θ)=sinθ\sin \left( {{180}^{\circ }}-\theta \right)=\sin \theta
So instead of θ\theta we will put values 2A, 2B, 2C so,
sin(MNL)+sin(NML)+sin(MNL)=sin(2A)+sin(2B)+sin(2C)\sin \left( \angle MNL \right)+\sin \left( \angle NML \right)+\sin \left( \angle MNL \right)=\sin \left( 2A \right)+\sin \left( 2B \right)+\sin \left( 2C \right)
As we know that in triangle ABC we can say A+B+C=180A+B+C={{180}^{\circ }},
Then we can write,
sin(2A)+sin(2B)+sin(2C)\sin \left( 2A \right)+\sin \left( 2B \right)+\sin \left( 2C \right) as 2sinAcosA+2sin(B+C)cos(BC)2\sin A\cos A+2\sin \left( B+C \right)\cos \left( B-C \right)
Using formula sin2θ=2sinθcosθ\sin 2\theta =2\sin \theta \cos \theta . Where θ\theta can be replaced by A and by using another formula,
sinC+sinD=2sin(C+D)2cos(CD)2\sin C+\sin D=2\sin \dfrac{\left( C+D \right)}{2}\cos \dfrac{\left( C-D \right)}{2}where C can be taken as 2B and D can be taken as 2C.
So, 2sinAcosA+2sin(B+C)cos(BC)2\sin A\cos A+2\sin \left( B+C \right)\cos \left( B-C \right)
Now as we know that A+B+C=πA+B+C=\pi then we can write B+C=πAB+C=\pi -A
So,2sinAcosA+2sin(πA)cos(BC)2\sin A\cos A+2\sin \left( \pi -A \right)\cos \left( B-C \right)
Now we will use the identity sin(πθ)sinθ\sin \left( \pi -\theta \right)-\sin \theta so in place of θ\theta we will use A.
Now we can write it as,
2sinAcosA+2sinAcos(BC)2\sin A\cos A+2\operatorname{sinA}\cos \left( B-C \right) we take common 2sinA2\sin A from both the terms so we can write it as,
2sinA(cosA+cos(BC))2\sin A\left( \cos A+\cos \left( B-C \right) \right)
Now we will substitute A as π(B+C)\pi -\left( B+C \right) then cos(π(B+C))=cos(B+C)\cos \left( \pi -\left( B+C \right) \right)=-\cos \left( B+C \right)
Using identity cos(πθ)=cosθ\cos \left( \pi -\theta \right)=-\cos \theta
2sinA(cos(B+C)+cos(BC))2\sin A\left( -\cos \left( B+C \right)+\cos \left( B-C \right) \right)
So by rearranging and writing it as,
2sinA(cos(BC)cos(B+C))2\sin A\left( \cos \left( B-C \right)-\cos \left( B+C \right) \right)
Now we will use identity that,
cos(BC)cos(B+C)=2sinBsinC\cos \left( B-C \right)-\cos \left( B+C \right)=2\sin B\sin C
Hence we can write it as,
2sinA(2sinBsinC)=4sinAsinBsinC2\sin A\left( 2\sin B\sin C \right)=4\sin A\sin B\sin C
Hence the correct option is ‘A’.

Note: Students should know all the trigonometric formulas and identities before solving the problem related like this. They should know the facts about pedal triangles too.
Students often make mistakes when considering the pedal triangle property.