Question
Question: In \[\Delta ABC\], \[\left( {a\cot A + b\cot B + c\cot C} \right)\] (where a, b, c are the sides of ...
In ΔABC, (acotA+bcotB+ccotC) (where a, b, c are the sides of a triangle) is equals to
(A) 2R+r
(B) R+2r
(C) R+r
(D) 2(R+r)
Solution
In this question, we have to choose the required specific form of the given particulars.
First we will apply sine formula in the given particular and then using the trigonometric formulas we will get the required result.
Formula used: According to the law, sinAa=sinBb=sinCc=2R
Here a, b, and c are the lengths of the sides of a triangle, and A, B, and C are the opposite angles (see the figure to the right), while R is the radius of the triangle's circumcircle.
cotθ=sinθcosθ
cos(2π−θ)=sinθ
sinAsinB=21(cos(A−B)+cos(A+B))
(cosA+cosB)=(2cos2A+Bcos2A−B)
cosC=1−sin22C
Complete step-by-step answer:
We need to find out in the ΔABC, (acotA+bcotB+ccotC) (where a,b,c are the sides of a triangle).
using sine formula, sinAa=sinBb=sinCc=2R,
We can equate this formula and we can write it as,
\Rightarrow$$$\dfrac{a}{{\sin A}} = 2R$$
Taking cross multiplication we get,
\Rightarrowa = 2R\sin A$$
Similarly we can write it as
$\Rightarrow\dfrac{b}{{\sin B}} = 2R
Taking cross multiplication we get,
$\Rightarrow$$$b = 2R\sin B
Also, we can write it as.
\Rightarrow$$$\dfrac{c}{{\sin C}} = 2R$$
Taking cross multiplication we get,
\Rightarrowc = 2R\sin C$$
Putting the value in the given equation,
$\Rightarrow\left( {a\cot A + b\cot B + c\cot C} \right)$$$$ = 2R\sin A\cot A + 2R\sin B\cot B + 2R\sin C\cot CWeusefromtrigonometricformula,\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }},usingitweget, \Rightarrow 2R\sin A\dfrac{{\cos A}}{{\sin A}} + 2R\sin B\dfrac{{\cos B}}{{\sin B}} + 2R\sin C\dfrac{{\cos C}}{{\sin C}}Cancellingthesametermandweget, \Rightarrow 2R\left( {\cos A + \cos B + \cos C} \right)Usingtheformula,andweget, \Rightarrow 2R\left( {2\cos \dfrac{{A + B}}{2}\cos \dfrac{{A - B}}{2} + 1 - {{\sin }^2}\dfrac{C}{2}} \right)SinceA,B,Caretheanglesofatriangle,soA + B + C = \pi \Rightarrow 2R\left\{ {1 + 2\cos \left( {\dfrac{\pi }{2} - \dfrac{C}{2}} \right)\cos \dfrac{{A - B}}{2} - {{\sin }^2}\dfrac{C}{2}} \right\}Nowweusetheformulathat,\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \Rightarrow 2R\left\{ {1 + 2\sin \left( {\dfrac{C}{2}} \right)\cos \dfrac{{A - B}}{2} - {{\sin }^2}\dfrac{C}{2}} \right\}Takingcommonweget, \Rightarrow 2R\left\{ {1 + 2\sin \dfrac{C}{2}\left( {\cos \dfrac{{A - B}}{2} - \sin \dfrac{C}{2}} \right)} \right\}SinceA,B,Caretheanglesofatriangle,soA + B + C = \pi ,usingitweget, \Rightarrow 2R\left\{ {1 + 2\sin \dfrac{C}{2}\left( {\cos \dfrac{{A - B}}{2} - \sin \left( {\dfrac{\pi }{2} - \dfrac{{A + B}}{2}} \right)} \right)} \right\}Nowweusetheformulathat,\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \Rightarrow 2R\left\{ {1 + 2\sin \dfrac{C}{2}\left( {\cos \dfrac{{A - B}}{2} - \cos \dfrac{{A + B}}{2}} \right)} \right\}Usingtheformula,\sin A\sin B = \dfrac{1}{2}(\cos (A - B) + \cos (A + B))weget, \Rightarrow 2R\left\{ {1 + 2\sin \dfrac{C}{2} \times 2\sin \dfrac{A}{2}\sin \dfrac{B}{2}} \right\}Nowmultiplythetermandweget, \Rightarrow 2R\left\{ {1 + 4\sin \dfrac{A}{2}\sin \dfrac{B}{2}\sin \dfrac{C}{2}} \right\}Weknowthat,4\sin \dfrac{A}{2}\sin \dfrac{B}{2}\sin \dfrac{C}{2} = \dfrac{r}{R}So,wecanwriteitas,2R\left( {1 + 4\sin \dfrac{A}{2}\sin \dfrac{B}{2}\sin \dfrac{C}{2}} \right) = 2R\left( {1 + \dfrac{r}{R}} \right)TakingLCMonthebrackettermandweget, = 2R\dfrac{{R + r}}{R}Oncancellingtheterm, = 2\left( {R + r} \right)$$
Thus (D) is the correct option.
Note: In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of a triangle (any shape) to the sines of its angles.
According to the law, sinAa=sinBb=sinCc=2R
Where a, b, and c are the lengths of the sides of a triangle, and A, B, and C are the opposite angles, while R is the radius of the triangle's circumcircle.