Solveeit Logo

Question

Question: In \( \Delta ABC \) , if \( \sin A:\sin C = \sin (A - B):\sin (B - C) \) , then \( {a^2} \) , \( {b^...

In ΔABC\Delta ABC , if sinA:sinC=sin(AB):sin(BC)\sin A:\sin C = \sin (A - B):\sin (B - C) , then a2{a^2} , b2{b^2} and c2{c^2} are in
A. A.P
B. G.P
C. H.P
D. None of these

Explanation

Solution

In this question, a triangle is given which satisfy the condition sinA:sinC=sin(AB):sin(BC)\sin A:\sin C = \sin (A - B):\sin (B - C) , we have to find relation of a2{a^2} , b2{b^2} and c2{c^2} .
Use the property of a triangle, the sum of all angles of a triangle is 180{180^ \circ } , to write the angle in terms of the other two angles.
\Rightarrow A+B+C=180A + B + C = {180^ \circ }
According to the trigonometrically ratios of angles (180  θ)\left( {180^\circ {\text{ }} - {\text{ }}\theta } \right) , sin(180  θ)=sinθ\sin \left( {180^\circ {\text{ }} - {\text{ }}\theta } \right) = \sin \theta .
Now, use the trigonometric formula, sin(A+B)sin(AB)=sin2Asin2B\sin (A + B)\sin (A - B) = {\sin ^2}A - {\sin ^2}B
Apply the Sine rule of the triangle,
If a, b and c are the sides of the triangle and their corresponding opposite angles are A , B and C then,
asinA=bsinB=csinC=k\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}} = k
From this relation write sinA\sin A , sinB\sin B and sinC\sin C in terms of a, b, c and k.
If a2{a^2} , b2{b^2} and c2{c^2} are in A.P. then the difference between the consecutive terms is the same.
b2a2=c2b2\Rightarrow {b^2} - {a^2} = {c^2} - {b^2}
2b2=c2+a2\Rightarrow 2{b^2} = {c^2} + {a^2}

Complete step-by-step answer:
Consider a triangle , where A, B and C are the angles and a, b, and c are the sides.
Given is the equation, sinA:sinC=sin(AB):sin(BC)\sin A:\sin C = \sin (A - B):\sin (B - C) which is same as,
sinAsinC=sin(AB)sin(BC)(1)\dfrac{{\sin A}}{{\sin C}} = \dfrac{{\sin (A - B)}}{{\sin (B - C)}} \ldots (1)
Since the sum of all angles of a triangle is 180{180^ \circ } .
A+B+C=180A + B + C = {180^ \circ }
A=180(B+C)(2)\Rightarrow A = {180^ \circ } - (B + C) \ldots (2)
And, find the angle C,
C=180(A+B)(3)C = {180^ \circ } - (A + B) \ldots (3)
Substitute the value of A from equation (1)(1) and C from equation (2)(2) into the left-hand side of the equation (3)(3) .
sinAsinC=sin(AB)sin(BC)\dfrac{{\sin A}}{{\sin C}} = \dfrac{{\sin (A - B)}}{{\sin (B - C)}}
sin(180(B+C))sin(180(A+B))=sin(AB)sin(BC)\dfrac{{\sin ({{180}^ \circ } - (B + C))}}{{\sin ({{180}^ \circ } - (A + B))}} = \dfrac{{\sin (A - B)}}{{\sin (B - C)}}
Apply the trigonometrically ratios of angles (180  θ)\left( {180^\circ {\text{ }} - {\text{ }}\theta } \right) , sin(180  θ)=sinθ\sin \left( {180^\circ {\text{ }} - {\text{ }}\theta } \right) = \sin \theta .
sin(B+C)sin(A+B)=sin(AB)sin(BC)\therefore \dfrac{{\sin (B + C)}}{{\sin (A + B)}} = \dfrac{{\sin (A - B)}}{{\sin (B - C)}}
After cross multiplying the equation we get,
sin(B+C)sin(BC)=sin(AB)sin(A+B)(4)\Rightarrow \sin (B + C)\sin (B - C) = \sin (A - B)\sin (A + B) \ldots (4)
Apply the trigonometric formula, sin(A+B)sin(AB)=sin2Asin2B\sin (A + B)\sin (A - B) = {\sin ^2}A - {\sin ^2}B to the equation (4)(4) .
sin2Bsin2C=sin2Asin2B\Rightarrow {\sin ^2}B - {\sin ^2}C = {\sin ^2}A - {\sin ^2}B
2sin2B=sin2A+sin2C(5)\Rightarrow 2{\sin ^2}B = {\sin ^2}A + {\sin ^2}C \ldots (5)
Apply the Sine rule of the triangle,
If a, b and c are the sides of the triangle and their corresponding opposite angles are A , B and C then,
asinA=bsinB=csinC=k\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}} = k
Take the ratio,
bsinB=k\dfrac{b}{{\sin B}} = k
bk=sinB\Rightarrow \dfrac{b}{k} = \sin B
Now, take the ratio,
asinA=k\dfrac{a}{{\sin A}} = k
ak=sinA\Rightarrow \dfrac{a}{k} = \sin A
Now, take the ratio,
csinC=k\dfrac{c}{{\sin C}} = k
ck=sinC\Rightarrow \dfrac{c}{k} = \sin C
Substitute the values of sinA\sin A , sinB\sin B and sinC\sin C into the equation (5)(5)
2(bk)2=(ak)2+(ck)2\Rightarrow 2{\left( {\dfrac{b}{k}} \right)^2} = {\left( {\dfrac{a}{k}} \right)^2} + {\left( {\dfrac{c}{k}} \right)^2}
2b2k2=a2+c2k2\Rightarrow \dfrac{{2{b^2}}}{{{k^2}}} = \dfrac{{{a^2} + {c^2}}}{{{k^2}}}
2b2=a2+c2\Rightarrow 2{b^2} = {a^2} + {c^2}
If a2{a^2} , b2{b^2} and c2{c^2} are in A.P. then the difference between the consecutive terms is the same.
b2a2=c2b2\Rightarrow {b^2} - {a^2} = {c^2} - {b^2}
2b2=c2+a2\Rightarrow 2{b^2} = {c^2} + {a^2}

Correct Answer : A) A.P.

Note:
An arithmetic progression is a sequence of numbers such that the difference of any two successive members is a constant. That is if a, b ,c are in A.P. then, ba=cbb - a = c - b . A sequence of numbers is called a geometric progression if the ratio of any two consecutive terms is same i.e. For example 2,4,8,16 is a GP because ratio of any two consecutive terms in the series is same , 42 =84=168=2\dfrac{4}{2}{\text{ }} = \dfrac{8}{4} = \dfrac{{16}}{8} = 2 . A sequence of numbers is called a harmonic progression if the reciprocal of the terms are in AP. In simple terms, a ,b, c, are in HP if 1a\dfrac{1}{a} , 1b\dfrac{1}{b} , 1c\dfrac{1}{c} are in AP.