Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

In ΔABC\Delta \,\,ABC if sin2A+sin2B+sin2C=2,si{{n}^{2}}A+si{{n}^{2}}B+si{{n}^{2}}C=2, then the triangle is

A

right angled, but need not be isosceles

B

right angled and isosceles

C

isosceles, but need not be right angled

D

equilateral

Answer

right angled, but need not be isosceles

Explanation

Solution

Given, sin2A+sin2B+sin2C=2{{\sin }^{2}}A+{{\sin }^{2}}B+{{\sin }^{2}}C=2
\Rightarrow 1cos2A+1cos2B+1cos2C=21-{{\cos }^{2}}A+1-{{\cos }^{2}}B+1-{{\cos }^{2}}C=2
\Rightarrow 1=cos2A+cos2B+cos2C1={{\cos }^{2}}A+{{\cos }^{2}}B+{{\cos }^{2}}C
\Rightarrow 1=12cosAcosBcosC1=1-2\cos A\,\cos B\,\cos C
\Rightarrow cosAcosBcosC=0\cos A\,\cos B\,\cos \,C=0
At least one angle should be 90o{{90}^{o}} and sum of two angles should be 90o{{90}^{o}} .
Hence, option [a] is correct.