Solveeit Logo

Question

Question: In \(\Delta ABC\), if \(\angle A = {90^ \circ }\) and \(AD \bot BC\), then the correct statement is ...

In ΔABC\Delta ABC, if A=90\angle A = {90^ \circ } and ADBCAD \bot BC, then the correct statement is

  1. AD2=(BD)(DC)A{D^2} = \left( {BD} \right)\left( {DC} \right)
  2. AB2=BC×BDA{B^2} = BC \times BD
  3. AC2=BC×DCA{C^2} = BC \times DC
Explanation

Solution

After drawing a perpendicular from AA, we get two triangles, we will first prove CAD=B\angle CAD = \angle B using properties of triangle. Then, we will find the value of tanB\tan B and tanCAD\tan \angle CAD from the triangles and then will equate these values to get the desired result.

Complete step-by-step answer:
First of all, let us draw the figure of the given statement. ADB\vartriangle ADB and CDACDA.

Here, A=90\angle A = {90^ \circ } and ADBCAD \bot BC.
In ABC\vartriangle ABC, A+B+C=180\angle A + \angle B + \angle C = {180^ \circ } using angle sum property.
Then,
90+B+C=180 B=90C  {90^ \circ } + \angle B + \angle C = {180^ \circ } \\\ \Rightarrow \angle B = {90^ \circ } - \angle C \\\
In CAD\vartriangle CAD,
ADC+CAD+ACD=180 90+CAD+ACD=180 CAD+C=90 CAD=90C  \angle ADC + \angle CAD + \angle ACD = {180^ \circ } \\\ \Rightarrow {90^ \circ } + \angle CAD + \angle ACD = {180^ \circ } \\\ \Rightarrow \angle CAD + \angle C = {90^ \circ } \\\ \Rightarrow \angle CAD = {90^ \circ } - \angle C \\\
Hence, CAD=B\angle CAD = \angle B
We will find the required result using trigonometry.
As we know that tanθ=OppositeBase\tan \theta = \dfrac{{{\text{Opposite}}}}{{{\text{Base}}}}
Now, in ADB\vartriangle ADB, we will find the value of tanB\tan B using trigonometry.
tanB=ADBD\tan B = \dfrac{{AD}}{{BD}} eqn. (1)
Also, we can find the value of tanB\tan B, from CDACDA
tanCAD=CDAD\tan \angle CAD = \dfrac{{CD}}{{AD}}
tanB=CDAD\tan B = \dfrac{{CD}}{{AD}} eqn. (2)
From equation (1) and (2), we will get,

ADBD=CDAD\dfrac{{AD}}{{BD}} = \dfrac{{CD}}{{AD}}
On cross-multiplying the above equation, we will get,
AD×AD=CD×BD AD2=BD×CD  AD \times AD = CD \times BD \\\ \Rightarrow A{D^2} = BD \times CD \\\
Hence, option A is correct.
Note: Students must know the trigonometric ratios, like sinθ=OppositeHypotenuse\sin \theta = \dfrac{{{\text{Opposite}}}}{{{\text{Hypotenuse}}}}, cosθ=BaseHypotenuse\cos \theta = \dfrac{{{\text{Base}}}}{{{\text{Hypotenuse}}}} and tanθ=OppositeBase\tan \theta = \dfrac{{{\text{Opposite}}}}{{{\text{Base}}}}. We can also do this question by applying Pythagoras theorem in the right triangles, ADC\vartriangle ADC and ADB\vartriangle ADB.