Question
Mathematics Question on Inverse Trigonometric Functions
In ΔABC, if a=2,B=tan−121 and C=tan−131, then (A,b) =
A
(43π,522)
B
(4π,52)
C
(43π,52)
D
(4π,522)
Answer
(43π,522)
Explanation
Solution
Given that, a=2
In ΔABC,B=tan−1(21)
C=tan−1(31)
We know that in ΔABC,
A+B+C=π
⇒A=π−tan−1(21)−tan−1(31)
⇒A=π−tan−1(1−6121+31)
⇒A=π−tan−1(5/65/6)=π−tan−1(1)
⇒A=π−tan−1(tan4π)
⇒A=π−4π⇒A=43π
Now, sinA=sin43π
=sin135∘=cos45∘=21
sinB=51
(∵tanB=21)
Now, by sine law
sinAa=sinBb
b=a⋅sinAsinB=2⋅2151=522
Hence, (A,b)=43π,522