Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

In ΔABC\Delta ABC, if a=2,B=tan112a =2, B = \tan ^{-1} \frac {1}{2} and C=tan113C = \tan ^{-1}\frac{1}{3}, then (A,b)(A,b) =

A

(3π4,225)\left(\frac {3\pi }{4},\frac{2\sqrt{2}}{\sqrt {5}}\right)

B

(π4,25)\left(\frac {\pi }{4},\frac {2}{\sqrt {5}}\right)

C

(3π4,25)\left(\frac {3\pi }{4},\frac {2}{\sqrt {5}}\right)

D

(π4,225)\left(\frac {\pi }{4},\frac {2 \sqrt{2}}{\sqrt {5}}\right)

Answer

(3π4,225)\left(\frac {3\pi }{4},\frac{2\sqrt{2}}{\sqrt {5}}\right)

Explanation

Solution

Given that, a=2a=2
In ΔABC,B=tan1(12)\Delta A B C, B=\tan ^{-1}\left(\frac{1}{2}\right)
C=tan1(13)C=\tan ^{-1}\left(\frac{1}{3}\right)
We know that in ΔABC\Delta A B C,
A+B+C=πA+B+C=\pi
A=πtan1(12)tan1(13)\Rightarrow A=\pi-\tan ^{-1}\left(\frac{1}{2}\right)-\tan ^{-1}\left(\frac{1}{3}\right)
A=πtan1(12+13116)\Rightarrow A=\pi-\tan ^{-1}\left(\frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{6}}\right)
A=πtan1(5/65/6)=πtan1(1)\Rightarrow A=\pi-\tan ^{-1}\left(\frac{5 / 6}{5 / 6}\right)=\pi-\tan ^{-1}(1)
A=πtan1(tanπ4)\Rightarrow A=\pi-\tan ^{-1}\left(\tan \frac{\pi}{4}\right)
A=ππ4A=3π4\Rightarrow A=\pi-\frac{\pi}{4} \Rightarrow A=\frac{3 \pi}{4}
Now, sinA=sin3π4\sin A =\sin \frac{3 \pi}{4}
=sin135=cos45=12=\sin 135^{\circ}=\cos 45^{\circ}=\frac{1}{\sqrt{2}}
sinB=15\sin B =\frac{1}{\sqrt{5}}
(tanB=12)\left(\because \tan B=\frac{1}{2}\right)
Now, by sine law
asinA=bsinB\frac{a}{\sin A}=\frac{b}{\sin B}
b=asinBsinA=21512=225b=a \cdot \frac{\sin B}{\sin A}=2 \cdot \frac{\frac{1}{\sqrt{5}}}{\frac{1}{\sqrt{2}}}=\frac{2 \sqrt{2}}{\sqrt{5}}
Hence, (A,b)=3π4,225(A, b)=\frac{3 \pi}{4}, \frac{2 \sqrt{2}}{\sqrt{5}}