Solveeit Logo

Question

Question: In \[\Delta ABC\], circumradius is 3 and inradius is 1.5 units, then the value of \[a{\cot ^2}\left(...

In ΔABC\Delta ABC, circumradius is 3 and inradius is 1.5 units, then the value of acot2(A)+b2cot3(B)+c3cot4(C)a{\cot ^2}\left( A \right) + {b^2}{\cot ^3}\left( B \right) + {c^3}{\cot ^4}\left( C \right)is
A. 535\sqrt 3
B. 737\sqrt 3
C. 13313\sqrt 3
D. None of these

Explanation

Solution

First of all, find the ratio of the circumradius and inradius of the given triangle to know whether it is an equilateral triangle or not. If it is an equilateral triangle then all the angles in the triangle are equal and thus the sides. So, use this concept to reach the solution of the given problem.

Complete step by step answer:
Given circumradius of ΔABC\Delta ABC is R=3R = 3
Inradius of ΔABC\Delta ABC is r=1.5r = 1.5
Now consider the ratio of circumradius and inradius i.e., R:r=3:1.5=2:1R:r = 3:1.5 = 2:1
We know that if the ratio of circumradius and inradius of a triangle is 2:12:1, then the triangle is an equilateral triangle.
So, ΔABC\Delta ABC is an equilateral triangle i.e., all the three angles are equal to 600{60^0} as shown in the below figure.

As ΔABC\Delta ABC is an equilateral triangle it must satisfy that a=b=c=2Rsinπ3=R3a = b = c = 2R\sin \dfrac{\pi }{3} = R\sqrt 3
Now, consider acot2(A)+b2cot3(B)+c3cot4(C)a{\cot ^2}\left( A \right) + {b^2}{\cot ^3}\left( B \right) + {c^3}{\cot ^4}\left( C \right)

acot2(A)+b2cot3(B)+c3cot4(C)=R3cot2(π3)+(R3)2cot3(π3)+(R3)3cot4(π3) acot2(A)+b2cot3(B)+c3cot4(C)=3R(13)2+3R2(13)3+33R3(13)4 acot2(A)+b2cot3(B)+c3cot4(C)=3R3+3R233+33R39 acot2(A)+b2cot3(B)+c3cot4(C)=R3+R23+R33 acot2(A)+b2cot3(B)+c3cot4(C)=33+(3)23+(3)33 [R=3] acot2(A)+b2cot3(B)+c3cot4(C)=3+9+273=393=133  \Rightarrow a{\cot ^2}\left( A \right) + {b^2}{\cot ^3}\left( B \right) + {c^3}{\cot ^4}\left( C \right) = R\sqrt 3 {\cot ^2}\left( {\dfrac{\pi }{3}} \right) + {\left( {R\sqrt 3 } \right)^2}{\cot ^3}\left( {\dfrac{\pi }{3}} \right) + {\left( {R\sqrt 3 } \right)^3}{\cot ^4}\left( {\dfrac{\pi }{3}} \right) \\\ \Rightarrow a{\cot ^2}\left( A \right) + {b^2}{\cot ^3}\left( B \right) + {c^3}{\cot ^4}\left( C \right) = \sqrt 3 R{\left( {\dfrac{1}{{\sqrt 3 }}} \right)^2} + 3{R^2}{\left( {\dfrac{1}{{\sqrt 3 }}} \right)^3} + 3\sqrt 3 {R^3}{\left( {\dfrac{1}{{\sqrt 3 }}} \right)^4} \\\ \Rightarrow a{\cot ^2}\left( A \right) + {b^2}{\cot ^3}\left( B \right) + {c^3}{\cot ^4}\left( C \right) = \dfrac{{\sqrt 3 R}}{3} + \dfrac{{3{R^2}}}{{3\sqrt 3 }} + \dfrac{{3\sqrt 3 {R^3}}}{9} \\\ \Rightarrow a{\cot ^2}\left( A \right) + {b^2}{\cot ^3}\left( B \right) + {c^3}{\cot ^4}\left( C \right) = \dfrac{R}{{\sqrt 3 }} + \dfrac{{{R^2}}}{{\sqrt 3 }} + \dfrac{{{R^3}}}{{\sqrt 3 }} \\\ \Rightarrow a{\cot ^2}\left( A \right) + {b^2}{\cot ^3}\left( B \right) + {c^3}{\cot ^4}\left( C \right) = \dfrac{3}{{\sqrt 3 }} + \dfrac{{{{\left( 3 \right)}^2}}}{{\sqrt 3 }} + \dfrac{{{{\left( 3 \right)}^3}}}{{\sqrt 3 }}{\text{ }}\left[ {\because R = 3} \right] \\\ \therefore a{\cot ^2}\left( A \right) + {b^2}{\cot ^3}\left( B \right) + {c^3}{\cot ^4}\left( C \right) = \dfrac{{3 + 9 + 27}}{{\sqrt 3 }} = \dfrac{{39}}{{\sqrt 3 }} = 13\sqrt 3 \\\

So, the correct answer is “Option C”.

Note: If the ratio of circumradius and inradius of a triangle is equal to 2:12:1, then that triangle is an equilateral triangle in which all the sides and the angle are equal. Circumradius is defined as the radius of that circle which circumscribes the triangle and the inradius is defined as the radius of the circle which is inscribed in the triangle.