Solveeit Logo

Question

Mathematics Question on Trigonometric Ratios

In ΔABCΔABC right angled at B, AB = 24 cm, BC = 7 m. Determine
(i) sin A, cos A
(ii) sin C, cos C

Answer

Applying Pythagoras theorem for ΔABC,ΔABC,we obtain
AC2= AB2+BC2\text{AC}^ 2 =\text{ AB}^ 2 + \text{BC}^ 2
=(24 cm)2+(7cm)2= (24\text{ cm})^2 + (7 \text{cm})^ 2
=(576+49)= (576 + 49)cm2
=625= 625 cm2
AC = 625\sqrt{625} cm = 25 cm

(i)

In ΔABC right angled at B,AB=24cm, BC=7m.

 sin A=Side  Opposite  to AHypotenuse\text{ sin A} = \frac{\text{Side}\ \text{ Opposite}\ \text{ to}\ ∠A }{\text{Hypotenuse}} =BCAC=725= \frac{\text{BC}}{\text{AC}} = \frac{7}{25}

\text{ Cos A} = \frac{\text{Side}\ \text{ Adjacent}\ \text{ to}\ ∠A }{\text{Hypotenuse}}$$= \frac{\text{AB}}{\text{AC}} = \frac{24}{25}


**(ii) **
In ΔABC right angled at B,AB=24cm, BC=7m.

 sin C=Side  Opposite  to CHypotenuse\text{ sin C} = \frac{\text{Side}\ \text{ Opposite}\ \text{ to}\ ∠C }{\text{Hypotenuse}}e =ABAC=2425= \frac{\text{AB}}{\text{AC}} = \frac{24}{25}

\text{ Cos C} = \frac{\text{Side}\ \text{ Adjacent}\ \text{ to}\ ∠C }{\text{Hypotenuse}}$$= \frac{\text{BC}}{\text{AC}} = \frac{7}{25}