Solveeit Logo

Question

Mathematics Question on Trigonometric Ratios

In ΔΔPQR, right angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of sin P, cos P and tan P.

Answer

Given that,
PR + QR = 25
PQ = 5 Let PR be x.
Therefore, QR = 25 - x

In ΔPQR,right angled at Q,PR+QR=25cm and PQ=5 cm

Applying Pythagoras theorem in ΔΔPQR, we obtain
PR2=PQ2+QR2\text{PR}^ 2 = \text{PQ}^ 2 + \text{QR}^ 2
x2=(5)2+(25x)2x^2= (5)^ 2 + (25 - x)^ 2
x2=25+625+x250xx^2= 25 + 625 + x^ 2 - 50x
50x=65050x=650
x=13x=13

Therefore, PR = 13 cm
QR = (25 - 13) cm = 12 cm

sin p= Opposite SideHypotenuse =QRPR=1213\text{sin p} =\frac{\text{ Opposite Side}}{\text{Hypotenuse }}= \frac{QR}{PR} = \frac{12}{13}

sin p=Opposite SideHypotenuse =QRPR=1213\text{sin p} = \frac{\text{Opposite Side}}{\text{Hypotenuse }}= \frac{QR}{PR} =\frac{ 12}{13}

tan p=Opposite SideAdjacent side =QRPQ=125\text{tan p} =\frac{\text{Opposite Side}}{\text{Adjacent side }}= \frac{QR}{PQ} = \frac{12}{5}