Solveeit Logo

Question

Question: In \(\cos x+\cos y=a\) , \(\cos 2x+\cos 2y=b\) , \(\cos 3x+\cos 3y=c\) , then find the value of \(a\...

In cosx+cosy=a\cos x+\cos y=a , cos2x+cos2y=b\cos 2x+\cos 2y=b , cos3x+cos3y=c\cos 3x+\cos 3y=c , then find the value of a(2a23)a\left( 2{{a}^{2}}-3 \right)
a) ab - c b) 2ab - c c) 3ab - c d) 3ac - b \begin{aligned} & \text{a) ab - c} \\\ & \text{b) 2ab - c} \\\ & \text{c) 3ab - c} \\\ & \text{d) 3ac - b} \\\ \end{aligned}

Explanation

Solution

Now we are given with cos2x+cos2y=b\cos 2x+\cos 2y=b and we know cos2θ=2cos2θ1\cos 2\theta =2{{\cos }^{2}}\theta -1 hence using this we will find the value of cos2x+cos2y{{\cos }^{2}}x+{{\cos }^{2}}y . Now we know the value of cos2x+cos2y{{\cos }^{2}}x+{{\cos }^{2}}y and also cosx+cosy=a\cos x+\cos y=a . Hence we will use formula (a+b)22ab=a2+b2{{\left( a+b \right)}^{2}}-2ab={{a}^{2}}+{{b}^{2}} to find the value of cosxcosy\cos x\cos y . Now consider the equation cos3x+cos3y=c\cos 3x+\cos 3y=c and we know that cos3θ=4cos3θ3cosθ\cos 3\theta =4{{\cos }^{3}}\theta -3\cos \theta to this equation we will use the formula a3+b3=(a+b)(a2ab+b2){{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right) and then substitute the values of cosx+cosy\cos x+\cos y , cos2x+cos2y{{\cos }^{2}}x+{{\cos }^{2}}y and cosxcosy\cos x\cos y . Hence we will find a relation in a, b and c. we will rearrange and simplify the equation to arrive at final equation

Complete step-by-step answer:
Now we are given that cosx+cosy=a\cos x+\cos y=a
Let cosx+cosy=a..................(1)\cos x+\cos y=a..................(1)
Now consider the equation.
cos2x+cos2y=b\cos 2x+\cos 2y=b
Now we know that cos2θ=2cos2θ1\cos 2\theta =2{{\cos }^{2}}\theta -1
Hence we have.
2cos2x1+2cos2y1=b 2cos2x2+2cos2y=b \begin{aligned} & 2{{\cos }^{2}}x-1+2{{\cos }^{2}}y-1=b \\\ & \Rightarrow 2{{\cos }^{2}}x-2+2{{\cos }^{2}}y=b \\\ \end{aligned}
Now taking – 2 to RHS we get
2cos2x+2cos2y=b+22{{\cos }^{2}}x+2{{\cos }^{2}}y=b+2
Now dividing the whole equation by 2 we get
cos2x+cos2y=(b+22)....................(2){{\cos }^{2}}x+{{\cos }^{2}}y=\left( \dfrac{b+2}{2} \right)....................(2)
Now we know that (a+b)2=a2+2ab+b2{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}
Taking 2ab to the RHS we get the formula as (a+b)22ab=a2+b2{{\left( a+b \right)}^{2}}-2ab={{a}^{2}}+{{b}^{2}} .
Now using this formula to equation (2) we get
(cosx+cosy)22cosxcosy=(b+22){{\left( \cos x+\cos y \right)}^{2}}-2\cos x\cos y=\left( \dfrac{b+2}{2} \right)
Now we know from equation (1) that cosx+cosy=a\cos x+\cos y=a hence using this substitution we get.
a22cosxcosy=(b+22){{a}^{2}}-2\cos x\cos y=\left( \dfrac{b+2}{2} \right)
Now taking 2cosxcosy2\cos x\cos y to RHS we get
a2(b+22)=2cosxcosy{{a}^{2}}-\left( \dfrac{b+2}{2} \right)=2\cos x\cos y
Dividing the whole equation by 2 we get
cosxcosy=a2(b+22)2\cos x\cos y=\dfrac{{{a}^{2}}-\left( \dfrac{b+2}{2} \right)}{2}
cosxcosy=a22b+24................(3)\Rightarrow \cos x\cos y=\dfrac{{{a}^{2}}}{2}-\dfrac{b+2}{4}................(3)
Now consider the equation cos3x+cos3y=c\cos 3x+\cos 3y=c
We know that cos3θ=4cos3θ3cosθ\cos 3\theta =4{{\cos }^{3}}\theta -3\cos \theta
Using this formula in the above equation we get.
4cos3x3cosx+4cos3y3cosy=c4{{\cos }^{3}}x-3\cos x+4{{\cos }^{3}}y-3\cos y=c
Now rearranging the terms we get
4cos3x+4cos3y3cosx3cosy=c4{{\cos }^{3}}x+4{{\cos }^{3}}y-3\cos x-3\cos y=c
Now let us take 4 and – 3 common from the equation.
4(cos3x+cos3y)3(cosx+cosy)=c4\left( {{\cos }^{3}}x+{{\cos }^{3}}y \right)-3\left( \cos x+\cos y \right)=c
Now we know that a3+b3=(a+b)(a2ab+b2){{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right) hence we will use this formula in the above equation to get
4[(cosx+cosy)(cos2xcosxcosy+cos2y)]3(cosx+cosy)=c4\left[ \left( \cos x+\cos y \right)\left( {{\cos }^{2}}x-\cos x\cos y+{{\cos }^{2}}y \right) \right]-3\left( \cos x+\cos y \right)=c
Rearranging the terms in the above equation we get
4[(cosx+cosy)((cos2x+cos2y)(cosxcosy))]3(cosx+cosy)=c4\left[ \left( \cos x+\cos y \right)\left( \left( {{\cos }^{2}}x+{{\cos }^{2}}y \right)-\left( \cos x\cos y \right) \right) \right]-3\left( \cos x+\cos y \right)=c
Now let us substitute the values from equation (1), equation (2) and equation (3).
Hence we get,
4[(a)((b+22)(a22b+24))]3(a)=c4\left[ \left( a \right)\left( \left( \dfrac{b+2}{2} \right)-\left( \dfrac{{{a}^{2}}}{2}-\dfrac{b+2}{4} \right) \right) \right]-3\left( a \right)=c
Now we have an equation in a, b and c. to arrive at final answer we will have to just simplify the equation.

& \Rightarrow 4\left[ \left( a \right)\left( \dfrac{b+2}{2}-\dfrac{{{a}^{2}}}{2}+\dfrac{b+2}{4} \right) \right]-3\left( a \right)=c \\\ & \Rightarrow 4\left[ \left( a \right)\left( \dfrac{2b+4}{4}-\dfrac{{{a}^{2}}}{2}+\dfrac{b+2}{4} \right) \right]-3\left( a \right)=c \\\ & \Rightarrow 4\left[ \left( a \right)\left( \dfrac{2b+4+b+2}{4}-\dfrac{{{a}^{2}}}{2} \right) \right]-3\left( a \right)=c \\\ & \Rightarrow 4\left[ \left( a \right)\left( \dfrac{3b+6}{4}-\dfrac{{{a}^{2}}}{2} \right) \right]-3\left( a \right)=c \\\ & \Rightarrow 4\left[ \left( a \right)\left( \dfrac{3\left( b+2 \right)}{4}-\dfrac{{{a}^{2}}}{2} \right) \right]-3\left( a \right)=c \\\ \end{aligned}$$ Now taking 4 inside the bracket we get $$\left[ \left( a \right)\left( 3\left( b+2 \right)-2{{a}^{2}} \right) \right]-3\left( a \right)=c$$ $$\begin{aligned} & \Rightarrow \left[ \left( a \right)\left( 3\left( b+2 \right)-2{{a}^{2}} \right) \right]-3\left( a \right)=c \\\ & \Rightarrow 3ab+6a-2{{a}^{3}}-3a=c \\\ & \Rightarrow 3ab-2{{a}^{3}}+3a=c \\\ & \Rightarrow 3ab-a\left( 2{{a}^{2}}-1 \right)=c \\\ \end{aligned}$$ Rearranging terms by shifting $a\left( 2{{a}^{2}}-1 \right)$ to RHS and c to LHS we get $$3ab-c=a\left( {{a}^{2}}-1 \right)$$ Hence we finally get $$a\left( {{a}^{2}}-1 \right)=3ab-c$$ **Note:** Note that the formula for ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$ and not $\left( a+b \right)\left( {{a}^{2}}+ab+{{b}^{2}} \right)$ . Also once we get the equation $$4\left[ \left( a \right)\left( \left( \dfrac{b+2}{2} \right)-\left( \dfrac{{{a}^{2}}}{2}-\dfrac{b+2}{4} \right) \right) \right]-3\left( a \right)=c$$ while simplifying the equation note that we need to find the value of $$a\left( {{a}^{2}}-1 \right)$$ and hence evaluate accordingly.