Solveeit Logo

Question

Question: In-circle of radius 4 cm of a triangle ABC touches the side BC at D. If BD = 6cm., DC = 8 cm, then t...

In-circle of radius 4 cm of a triangle ABC touches the side BC at D. If BD = 6cm., DC = 8 cm, then the area of the triangle ABC is-

A

42 cm2

B

84 cm2

C

843\frac { 84 } { 3 }cm2

D

None of these

Answer

84 cm2

Explanation

Solution

We have Š IBD = B2\frac { B } { 2 } , Š ICD =

BD = 6 cm, CD = 8 cm Ž BC = a = 14 cm.

Also, ID = r = 4 cm

Now, tan B2\frac { B } { 2 } = 46\frac { 4 } { 6 } = 23\frac { 2 } { 3 } and tan= 48\frac { 4 } { 8 }= 12\frac { 1 } { 2 }

tan B2\frac { B } { 2 } tan = (sa)(sc)s(sb)\sqrt { \frac { ( s - a ) ( s - c ) } { s ( s - b ) } } × =

\ 23\frac { 2 } { 3 } ×12\frac { 1 } { 2 }= Ž s = 21 cm

\ Area, D = rs = 4 × 21 = 84 cm2