Solveeit Logo

Question

Question: In C.G.S. system the magnitude of the force is 100 dynes. In another system where the fundamental ph...

In C.G.S. system the magnitude of the force is 100 dynes. In another system where the fundamental physical quantities are kilogram, metre and minute, the magnitude of the force is

A

0.036

B

0.36

C

3.6

D

36

Answer

3.6

Explanation

Solution

n1=100n_{1} = 100, M1=gM_{1} = g,L1=cmL_{1} = cm, T1=secT_{1} = \sec and M2=kgM_{2} = kg,

L2=meterL_{2} = meter, T2=minuteT_{2} = m\text{inute}, x=1x = 1, y=1y = 1, z=2z = - 2

By substituting these values in the following conversion formula n2=n1[M1M2]x[L1L2]y[T1T2]2n_{2} = n_{1}\left\lbrack \frac{M_{1}}{M_{2}} \right\rbrack^{x}\left\lbrack \frac{L_{1}}{L_{2}} \right\rbrack^{y}\left\lbrack \frac{T_{1}}{T_{2}} \right\rbrack^{2}

n2=100[gmkg]1[cmmeter]1[secminute[]2]n_{2} = 100\left\lbrack \frac{gm}{kg} \right\rbrack^{1}\left\lbrack \frac{cm}{meter} \right\rbrack^{1}\left\lbrack \frac{\sec}{\text{minute}}\lbrack\rbrack^{- 2} \right\rbrack

n2=100[gm103gm]1[cm102cm]1[sec60sec2]=3.6n_{2} = 100\left\lbrack \frac{gm}{10^{3}gm} \right\rbrack^{1}\left\lbrack \frac{cm}{10^{2}cm} \right\rbrack^{1}\left\lbrack \frac{\sec}{60\sec}^{- 2} \right\rbrack = 3.6