Solveeit Logo

Question

Question: In cartesian co-ordinates the point *A* is \((x_{1},y_{1})\) where \(x_{1} = 1\) on the curve \(y = ...

In cartesian co-ordinates the point A is (x1,y1)(x_{1},y_{1}) where x1=1x_{1} = 1 on the curve y=x2+x+10y = x^{2} + x + 10. The tangent at A cuts the x-axis at B. The value of the dot product OA.AB\overset{\rightarrow}{OA}.\overset{\rightarrow}{AB} is

A

5203- \frac{520}{3}

B

148- 148

C

140

D

12

Answer

148- 148

Explanation

Solution

Given curve is y=x2+x+10y = x^{2} + x + 10 ......(i)

when x=1x = 1, y=12+1+10=12y = 1^{2} + 1 + 10 = 12

\therefore A(1,12)A \equiv (1,12); \therefore OA=i+12j\overset{\rightarrow}{OA} = \mathbf{i} + 12\mathbf{j}

From (i), dydx=2x+1\frac{dy}{dx} = 2x + 1

Equation of tangent at A is y12=(dydx)(1,12)(x1)y - 12 = \left( \frac{dy}{dx} \right)_{(1,12)}(x - 1)

y12=(2×1+1)(x1)y - 12 = (2 \times 1 + 1)(x - 1)y12=3x3y - 12 = 3x - 3

\therefore y=3(x+3)y = 3(x + 3)

This tangent cuts x-axis (i.e., y=0y = 0) at (3,0)( - 3,0)

\therefore B(3,0)B \equiv ( - 3,0)

OB=3i+0.j=3i\overset{\rightarrow}{OB} = - 3\mathbf{i} + 0.\mathbf{j} = - 3\mathbf{i}; OA.AB=OA.(OBOA)\overset{\rightarrow}{OA}.\overset{\rightarrow}{AB} = \overset{\rightarrow}{OA}.(\overset{\rightarrow}{OB} - \overset{\rightarrow}{OA})

=(i+12j).(3ii12j)(\mathbf{i} + 12\mathbf{j}).( - 3\mathbf{i} - \mathbf{i} - 12\mathbf{j})

= (i+12j).(4i12j)(\mathbf{i} + 12\mathbf{j}).( - 4\mathbf{i} - 12\mathbf{j})

= 4144=148- 4 - 144 = - 148