Solveeit Logo

Question

Question: In arrangement given in figure, if the block of mass m is displaced, the frequency is given by <img...

In arrangement given in figure, if the block of mass m is displaced, the frequency is given by

A

n=12π(k1k2m)n = \frac { 1 } { 2 \pi } \sqrt { \left( \frac { k _ { 1 } - k _ { 2 } } { m } \right) }

B

n=12π(k1+k2m)n = \frac { 1 } { 2 \pi } \sqrt { \left( \frac { k _ { 1 } + k _ { 2 } } { m } \right) }

C

n=12π(mk1+k2)n = \frac { 1 } { 2 \pi } \sqrt { \left( \frac { m } { k _ { 1 } + k _ { 2 } } \right) }

D

n=12π(mk1k2)n = \frac { 1 } { 2 \pi } \sqrt { \left( \frac { m } { k _ { 1 } - k _ { 2 } } \right) }

Answer

n=12π(k1+k2m)n = \frac { 1 } { 2 \pi } \sqrt { \left( \frac { k _ { 1 } + k _ { 2 } } { m } \right) }

Explanation

Solution

With respect to the block the springs are connected in parallel combination.

\therefore Combined stiffness k = k1+ k2 and n=12πk1+k2mn = \frac { 1 } { 2 \pi } \sqrt { \frac { k _ { 1 } + k _ { 2 } } { m } }