Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

In Argand's plane, the point corresponding to (1i3)(1+i)(3+i)\frac {(1-i\sqrt {3})(1+i)} {(\sqrt {3}+i)} lies in

A

quadrant I

B

quadrant II

C

quadrant III

D

quadrant IV

Answer

quadrant IV

Explanation

Solution

Given,
(1i3)(1+i)(3+i)=(1i3+i+3)(3i)(3+1)\frac{(1-i \sqrt{3})(1+i)}{(\sqrt{3}+i)}=\frac{(1-i \sqrt{3}+i+\sqrt{3})(\sqrt{3}-i)}{(3+1)}
(i2=1)\left(\because i^{2}=-1\right)
=14(1+3)+i(13)(3i)=\frac{1}{4} \cdot\\{(1+\sqrt{3})+i(1-\sqrt{3})\\} \cdot(\sqrt{3}-i)
=143(1+3)+i(13)3(1+3)i+(13)=\frac{1}{4} \cdot\\{\sqrt{3}(1+\sqrt{3})+i(1-\sqrt{3}) \sqrt{3} -(1+\sqrt{3}) i+(1-\sqrt{3})\\}
\left.=\frac{1}{4} \cdot\\{\sqrt{3}+ 3+1-\sqrt{3})+(\sqrt{3}-3-1-\sqrt{3}) i\right\\}
=1444i=1i=\frac{1}{4} \cdot\\{4-4 i\\}=1-i
The point (1i)(1-i) in Arg and plane is (1,1)(1,-1) which lies in IVth quadrant