Solveeit Logo

Question

Question: In any triangle, the minimum value of \(\dfrac{{{r_1}{r_2}{r_3}}}{{{r^3}}}\) is equal to A. \(1\)...

In any triangle, the minimum value of r1r2r3r3\dfrac{{{r_1}{r_2}{r_3}}}{{{r^3}}} is equal to
A. 11
B. 99
C. 2727
D. None of these

Explanation

Solution

To solve the question, First understand the concept of in-radii and ex-radii.
Inradius is a radius of an Incircle which is inside the triangle
Exradii is the radius of a Excircles, excircle of the triangle is a circle lying outside the triangle
Consider rr is the Inradius and r1{r_1},r2{r_2} and r3{r_3} are the Exradii.
Use the fact that the geometric mean is greater than the harmonic mean.
G.M. > H.M.
(r1rr2rr3r)1n>3r1r+r2r+r3r(1){\left( {\dfrac{{{r_1}}}{r} \cdot \dfrac{{{r_2}}}{r} \cdot \dfrac{{{r_3}}}{r}} \right)^{\dfrac{1}{n}}} > \dfrac{3}{{\dfrac{{{r_1}}}{r} + \dfrac{{{r_2}}}{r} + \dfrac{{{r_3}}}{r}}} \ldots (1)
Since r1=Δsa{r_1} = \dfrac{\Delta }{{s - a}} , r2=Δsb{r_2} = \dfrac{\Delta }{{s - b}},r3=Δsc{r_3} = \dfrac{\Delta }{{s - c}} and r=Δsr = \dfrac{\Delta }{s}, substitute these values into the right side of inequality (1)(1) and solve the inequality.

Complete step-by-step solution:
Consider rr is the Inradius and r1{r_1},r2{r_2} and r3{r_3}are the Exradii.
Inradius is a radius of a Incircle which is inside the triangle
Exradii is the radius of a Excircles, excircle of the triangle is a circle lying outside the triangle
Here, r1=Δsa{r_1} = \dfrac{\Delta }{{s - a}} , r2=Δsb{r_2} = \dfrac{\Delta }{{s - b}},r3=Δsc{r_3} = \dfrac{\Delta }{{s - c}} and r=Δsr = \dfrac{\Delta }{s}.
The Geometric mean: The geometric mean is defined as the nth root of the product of a set of numbersx1,x2,x3,,xn{x_1},{x_2},{x_3}, \ldots ,{x_n}.
G.M.= (i=1nxi)1n{\left( {\prod\limits_{i = 1}^n {{x_i}} } \right)^{\dfrac{1}{n}}}
The Harmonic Mean: The harmonic mean formula is,
H.M.=ni=1n1xi\dfrac{n}{{\sum\limits_{i = 1}^n {\dfrac{1}{{{x_i}}}} }}
n=the number of the values in a dataset
xi{x_i}=the point in a dataset
Use the fact that the geometric mean is greater than the harmonic mean.
G.M. \geqslant H.M.
Here, n=3n = 3, according to the formula of G.M. and H.M.
(r1rr2rr3r)133rr1+rr2+rr3(1){\left( {\dfrac{{{r_1}}}{r} \cdot \dfrac{{{r_2}}}{r} \cdot \dfrac{{{r_3}}}{r}} \right)^{\dfrac{1}{3}}} \geqslant \dfrac{3}{{\dfrac{r}{{{r_1}}} + \dfrac{r}{{{r_2}}} + \dfrac{r}{{{r_3}}}}} \ldots (1)
Substitute r1=Δsa{r_1} = \dfrac{\Delta }{{s - a}} , r2=Δsb{r_2} = \dfrac{\Delta }{{s - b}},r3=Δsc{r_3} = \dfrac{\Delta }{{s - c}} and r=Δsr = \dfrac{\Delta }{s} values into inequality(1)(1)
(r1rr2rr3r)133ΔsΔsa+ΔsΔsb+ΔsΔsc{\left( {\dfrac{{{r_1}}}{r} \cdot \dfrac{{{r_2}}}{r} \cdot \dfrac{{{r_3}}}{r}} \right)^{\dfrac{1}{3}}} \geqslant \dfrac{3}{{\dfrac{{\dfrac{\Delta }{s}}}{{\dfrac{\Delta }{{s - a}}}} + \dfrac{{\dfrac{\Delta }{s}}}{{\dfrac{\Delta }{{s - b}}}} + \dfrac{{\dfrac{\Delta }{s}}}{{\dfrac{\Delta }{{s - c}}}}}}
(r1rr2rr3r)133sas+sbs+scs{\left( {\dfrac{{{r_1}}}{r} \cdot \dfrac{{{r_2}}}{r} \cdot \dfrac{{{r_3}}}{r}} \right)^{\dfrac{1}{3}}} \geqslant \dfrac{3}{{\dfrac{{s - a}}{s} + \dfrac{{s - b}}{s} + \dfrac{{s - c}}{s}}}
Take L.C.M of the denominator of the right side of the inequality.
(r1rr2rr3r)133sa+sb+scs{\left( {\dfrac{{{r_1}}}{r} \cdot \dfrac{{{r_2}}}{r} \cdot \dfrac{{{r_3}}}{r}} \right)^{\dfrac{1}{3}}} \geqslant \dfrac{3}{{\dfrac{{s - a + s - b + s - c}}{s}}}
(r1rr2rr3r)133ssa+sb+sc{\left( {\dfrac{{{r_1}}}{r} \cdot \dfrac{{{r_2}}}{r} \cdot \dfrac{{{r_3}}}{r}} \right)^{\dfrac{1}{3}}} \geqslant \dfrac{{3s}}{{s - a + s - b + s - c}}
(r1rr2rr3r)133s3s(a+b+c)(2){\left( {\dfrac{{{r_1}}}{r} \cdot \dfrac{{{r_2}}}{r} \cdot \dfrac{{{r_3}}}{r}} \right)^{\dfrac{1}{3}}} \geqslant \dfrac{{3s}}{{3s - (a + b + c)}} \ldots (2)
Here, s is the half of the perimeter of the triangle, s=a + b + c2s = \dfrac{{a{\text{ }} + {\text{ }}b{\text{ }} + {\text{ }}c}}{2}.
2s=a + b + c\Rightarrow 2s = a{\text{ + }}b{\text{ + }}c
Substitute 2s=a + b + c2s = a{\text{ + }}b{\text{ + }}c into the equation(2)(2).
(r1rr2rr3r)133s3s2s\Rightarrow {\left( {\dfrac{{{r_1}}}{r} \cdot \dfrac{{{r_2}}}{r} \cdot \dfrac{{{r_3}}}{r}} \right)^{\dfrac{1}{3}}} \geqslant \dfrac{{3s}}{{3s - 2s}}
(r1rr2rr3r)133\Rightarrow {\left( {\dfrac{{{r_1}}}{r} \cdot \dfrac{{{r_2}}}{r} \cdot \dfrac{{{r_3}}}{r}} \right)^{\dfrac{1}{3}}} \geqslant 3
(r1r2rr3)133\Rightarrow {\left( {\dfrac{{{r_1}{r_2}r}}{{{r^3}}}} \right)^{\dfrac{1}{3}}} \geqslant 3
Take cube on both sides of the inequality,
[(r1r2rr3)13]3(3)3\Rightarrow {\left[ {{{\left( {\dfrac{{{r_1}{r_2}r}}{{{r^3}}}} \right)}^{\dfrac{1}{3}}}} \right]^3} \geqslant {\left( 3 \right)^3}
r1r2rr327\Rightarrow \dfrac{{{r_1}{r_2}r}}{{{r^3}}} \geqslant 27
\therefore The minimum value of r1r2r3r3\dfrac{{{r_1}{r_2}{r_3}}}{{{r^3}}} is 2727.

Option C is the correct answer.

Note: The important step is the note that the geometric mean is (r1rr2rr3r)13{\left( {\dfrac{{{r_1}}}{r} \cdot \dfrac{{{r_2}}}{r} \cdot \dfrac{{{r_3}}}{r}} \right)^{\dfrac{1}{3}}}not simply (r1r2r3)13{\left( {{r_1} \cdot {r_2} \cdot {r_3}} \right)^{\dfrac{1}{3}}}.
And ,the harmonic mean we use is rr1+rr2+rr3\dfrac{r}{{{r_1}}} + \dfrac{r}{{{r_2}}} + \dfrac{r}{{{r_3}}}.
There are three exradii so we take geometric and harmonic mean of three terms n=3\therefore n = 3 .