Question
Mathematics Question on Trigonometric Functions
In any triangle ABC, the simplified form of a2Cos2A−b2Cos2B is
A
a2−b2
B
a2−b21
C
a21−b21
D
a2+b2
Answer
a21−b21
Explanation
Solution
a2cos2A−b2cos2B
=a2(1−2sin2A)−b2(1−2sin2B)
=a2(1−2a2k2)−b2(1−2b2k2)
(∵asinA=bsinB=k)
=(a21−2k2)−(b21−2k2)
=(a21−b21)−2k2+2k2
=a21−b21