Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

In any triangle ABCABC, the simplified form of Cos2Aa2Cos2Bb2\frac {Cos 2A}{a^2}-\frac{Cos2B}{b^2} is

A

a2b2a^2 -b^2

B

1a2b2\frac {1}{a^2-b^2}

C

1a21b2\frac {1}{a^2} - \frac {1} {b^2}

D

a2+b2a^2+b^2

Answer

1a21b2\frac {1}{a^2} - \frac {1} {b^2}

Explanation

Solution

cos2Aa2cos2Bb2\frac{\cos 2 A}{a^{2}} -\frac{\cos 2 B}{b^{2}}
=(12sin2A)a2(12sin2B)b2=\frac{\left(1-2 \sin ^{2} A\right)}{a^{2}}-\frac{\left(1-2 \sin ^{2} B\right)}{b^{2}}
=(12a2k2)a2(12b2k2)b2=\frac{\left(1-2 a^{2} k^{2}\right)}{a^{2}}-\frac{\left(1-2 b^{2} k^{2}\right)}{b^{2}}
(sinAa=sinBb=k)\left(\because \frac{\sin A}{a}=\frac{\sin B}{b}=k\right)
=(1a22k2)(1b22k2)=\left(\frac{1}{a^{2}}-2 k^{2}\right)-\left(\frac{1}{b^{2}}-2 k^{2}\right)
=(1a21b2)2k2+2k2=\left(\frac{1}{a^{2}}-\frac{1}{b^{2}}\right)-2 k^{2}+2 k^{2}
=1a21b2=\frac{1}{a^{2}}-\frac{1}{b^{2}}