Solveeit Logo

Question

Question: In any triangle ABC if \(2\cos B = \frac{a}{c}\), then the triangle isC...

In any triangle ABC if 2cosB=ac2\cos B = \frac{a}{c}, then the triangle isC

A

Right angled

B

Equilateral

C

Isosceles

D

None of these

Answer

Isosceles

Explanation

Solution

2cosB=ac=ksinAksinC=sinAsinC2\cos B = \frac{a}{c} = \frac{k\sin A}{k\sin C} = \frac{\sin A}{\sin C}

2cosBsinC=sinA2\cos B\sin C = \sin A

sin(B+C)sin(BC)=sinA\sin(B + C) - \sin(B - C) = \sin A

sin(180oA)sin(BC)\sin(180^{o} - A) - \sin(B - C)

= sinAsinAsin(BC)=sinA\sin A - \sin(B - C) = \sin Asin(BC)=0\sin(B - C) = 0

BC=0B - C = 0B=CB = C

\therefore Triangle is isosceles.