Solveeit Logo

Question

Question: In any triangle \(AB = 2,BC = 4,CA = 3\) and \(D\) is mid point of BC, then...

In any triangle AB=2,BC=4,CA=3AB = 2,BC = 4,CA = 3 and DD is mid point of BC, then

A

cosB=116\cos B = \frac{11}{6}

B

cosB=78\cos B = \frac{7}{8}

C

AD=2.4AD = 2.4

D

AD2=2.5AD^{2} = 2.5

Answer

AD2=2.5AD^{2} = 2.5

Explanation

Solution

From ΔABC\Delta ABC, cosB=22+42322×2×4=1116\cos B = \frac{2^{2} + 4^{2} - 3^{2}}{2 \times 2 \times 4} = \frac{11}{16}

From ΔABD\Delta ABD, cosB=22+22AD22×2×2=1116\cos B = \frac{2^{2} + 2^{2} - AD^{2}}{2 \times 2 \times 2} = \frac{11}{16}

\therefore 1116=22+22AD22×2×2\frac{11}{16} = \frac{2^{2} + 2^{2} - AD^{2}}{2 \times 2 \times 2}

AD2=2.5AD^{2} = 2.5.