Solveeit Logo

Question

Question: In any \(\Delta ABC\) , prove that \({{\left( a-b \right)}^{2}}{{\cos }^{2}}\dfrac{C}{2}+{{\left( ...

In any ΔABC\Delta ABC , prove that
(ab)2cos2C2+(a+b)2sin2C2=c2{{\left( a-b \right)}^{2}}{{\cos }^{2}}\dfrac{C}{2}+{{\left( a+b\right)}^{2}}{{\sin}^{2}} \dfrac{C}{2} = {{c}^{2}}

Explanation

Solution

Hint: Try to simplify the left-hand side of the equation given in the question by the application of the sine rule of a triangle followed by the use of the formula of sin2A and the formula of (sinX-sinY).

Complete step-by-step answer:
Before starting with the solution, let us draw a diagram for better visualisation.

Now starting with the left-hand side of the equation that is given in the question.
We know, according to the sine rule of the triangle: asinA=bsinB=csinC=k\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=k and in other terms, it can be written as:
a=ksinA b=ksinB c=ksinC \begin{aligned} & a=k\sin A \\\ & b=k\sin B \\\ & c=k\sin C \\\ \end{aligned}
So, applying this to our expression, we get
(ab)2cos2C2+(a+b)2sin2C2{{\left( a-b \right)}^{2}}{{\cos }^{2}}\dfrac{C}{2}+{{\left( a+b \right)}^{2}}{{\sin }^{2}}\dfrac{C}{2}
=(ksinAksinB)2cos2C2+(ksinA+ksinB)2sin2C2={{\left( k\operatorname{sinA}-k\sin B \right)}^{2}}{{\cos }^{2}}\dfrac{C}{2}+{{\left( k\sin A+k\sin B \right)}^{2}}{{\sin }^{2}}\dfrac{C}{2}
Now we will take k2{{k}^{2}} common from each term. On doing so, we get
=k2(sinAsinB)2cos2C2+k2(sinA+sinB)2sin2C2={{k}^{2}}{{\left( \operatorname{sinA}-\sin B \right)}^{2}}{{\cos }^{2}}\dfrac{C}{2}+{{k}^{2}}{{\left( \sin A+\sin B \right)}^{2}}{{\sin }^{2}}\dfrac{C}{2}

According to the formula: 2sin(XY2)cos(X+Y2)=sin(X)sin(Y)2\sin \left( \dfrac{X-Y}{2} \right)\cos \left( \dfrac{X+Y}{2} \right)=\sin \left( X \right)-sin\left( Y \right) , we get
=4k2sin2(AB2)cos2(A+B2)cos2C2+k2(sinA+sinB)2sin2C2=4{{k}^{2}}si{{n}^{2}}\left( \dfrac{A-B}{2} \right)co{{s}^{2}}\left( \dfrac{A+B}{2} \right){{\cos }^{2}}\dfrac{C}{2}+{{k}^{2}}{{\left( \sin A+\sin B \right)}^{2}}{{\sin }^{2}}\dfrac{C}{2}

Now according to the formula: 2sin(X+Y2)cos(XY2)=sin(X)+sin(Y)2\sin \left( \dfrac{X+Y}{2} \right)\cos \left( \dfrac{X-Y}{2} \right)=\sin \left( X \right)+sin\left( Y \right) , we get
=4k2sin2(AB2)cos2(A+B2)cos2C2+4k2cos2(AB2)sin2(A+B2)sin2C2=4{{k}^{2}}si{{n}^{2}}\left( \dfrac{A-B}{2} \right)co{{s}^{2}}\left( \dfrac{A+B}{2} \right){{\cos }^{2}}\dfrac{C}{2}+4{{k}^{2}}{{\cos }^{2}}\left( \dfrac{A-B}{2} \right)si{{n}^{2}}\left( \dfrac{A+B}{2} \right){{\sin }^{2}}\dfrac{C}{2}

Now as ABC is a triangle, we can say:
A+B+C=180\angle A+\angle B+\angle C=180{}^\circ
A+B=180C\Rightarrow \angle A+\angle B=180{}^\circ -\angle C

So, substituting the value of A+B in our expression. On doing so, we get
=4k2sin2(AB2)cos2(90C2)cos2C2+4k2cos2(AB2)sin2(90C2)sin2C2=4{{k}^{2}}si{{n}^{2}}\left( \dfrac{A-B}{2} \right)co{{s}^{2}}\left( 90{}^\circ -\dfrac{C}{2} \right){{\cos }^{2}}\dfrac{C}{2}+4{{k}^{2}}{{\cos }^{2}}\left( \dfrac{A-B}{2} \right)si{{n}^{2}}\left( 90{}^\circ -\dfrac{C}{2} \right){{\sin }^{2}}\dfrac{C}{2}

We know sin(90X)=cosX\sin \left( 90{}^\circ -X \right)=\cos X and cos(90X)=sinX\cos \left( 90{}^\circ -X \right)=\sin X . Using this in our expression, we get
=4k2sin2(AB2)sin2C2cos2C2+4k2cos2(AB2)cos2C2sin2C2=4{{k}^{2}}si{{n}^{2}}\left( \dfrac{A-B}{2} \right)si{{n}^{2}}\dfrac{C}{2}{{\cos }^{2}}\dfrac{C}{2}+4{{k}^{2}}{{\cos }^{2}}\left( \dfrac{A-B}{2} \right)co{{s}^{2}}\dfrac{C}{2}{{\sin }^{2}}\dfrac{C}{2}

Now, when we use the formula sin2X=2sinXcosX\sin 2X=2\operatorname{sinX}\operatorname{cosX} , we get
=k2sin2(AB2)sin2C+k2cos2(AB2)sin2C={{k}^{2}}si{{n}^{2}}\left( \dfrac{A-B}{2} \right)si{{n}^{2}}C+{{k}^{2}}{{\cos }^{2}}\left( \dfrac{A-B}{2} \right){{\sin }^{2}}C
Now using the sine rule we can say that ksinC=ck\sin C=c .
=c2sin2(AB2)+c2cos2(AB2)={{c}^{2}}si{{n}^{2}}\left( \dfrac{A-B}{2} \right)+{{c}^{2}}{{\cos }^{2}}\left( \dfrac{A-B}{2} \right)
Now we know sin2X+cos2X=1{{\sin }^{2}}X+{{\cos }^{2}}X=1 . So, our expression becomes:
=c2(sin2(AB2)+cos2(AB2))={{c}^{2}}\left( si{{n}^{2}}\left( \dfrac{A-B}{2} \right)+{{\cos }^{2}}\left( \dfrac{A-B}{2} \right) \right)
=c2={{c}^{2}}

The left-hand side of the equation given in the question is equal to the right-hand side of the equation. Hence, we can say that we have proved the equation given in the question.

Note: Be careful about the calculation and the signs while opening the brackets. Also, you need to learn the sine rule and the cosine rule as they are used very often. The k in the sine rule is twice the radius of the circumcircle of the triangle, i.e., sine rule can also be written as asinA=bsinB=csinC=k=2R=abc2Δ\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=k=2R=\dfrac{abc}{2\Delta } , where Δ\Delta represents the area of the triangle.