Question
Question: In any \(\Delta ABC,\) prove that: \(\dfrac{\left( {{b}^{2}}-{{c}^{2}} \right)}{{{a}^{2}}}\sin 2A...
In any ΔABC, prove that:
a2(b2−c2)sin2A+b2(c2−a2)sin2B+c2(a2−b2)sin2C=0.
Solution
Hint: Use the formula of properties of triangle given by, a=2RsinA,b=2RsinB and c=2RsinC, where a, b and c are the lengths of the sides of the triangle opposite to vertex A, B and C respectively and ‘R’ is the circumradius of the circumcircle of the triangle. A, B and C also represent the angles of the triangle. Cancel the common terms and simplify the expression to prove the result.
Complete step-by-step answer:
We have been provided with the expression,
a2(b2−c2)sin2A+b2(c2−a2)sin2B+c2(a2−b2)sin2C
We need to prove that the value of this expression is zero.
Therefore,
LHS=a2(b2−c2)sin2A+b2(c2−a2)sin2B+c2(a2−b2)sin2C
Applying the formula of relation between side and the angle of a triangle, we get,
a=2RsinA,b=2RsinB and c=2RsinC. Therefore,
LHS=(2RsinA)2(2RsinB)2−(2RsinC)2×sin2A+(2RsinB)2(2RsinC)2−(2RsinA)2×sin2B +(2RsinC)2(2RsinA)2−(2RsinB)2×sin2CLHS=4R2sin2A4R2sin2B−4R2sin2C×sin2A+4R2sin2B4R2sin2C−4R2sin2A×sin2B +4R2sin2C4R2sin2A−4R2sin2B×sin2C
Taking 4R2 common and cancelling from each term, we get,
LHS=sin2Asin2B−sin2C×sin2A+sin2Bsin2C−sin2A×sin2B+sin2Csin2A−sin2B×sin2C
Using the algebraic identity: a2−b2=(a+b)×(a−b), we get,
L.H.S=sin2A(sinB−sinC)(sinB+sinC)×sin2A+sin2B(sinC−sinA)(sinC+sinA)×sin2B +sin2C(sinA−sinB)(sinA+sinB)×sin2C
Now, applying the formulas,
sina+sinb=2sin(2a+b)cos(2a−b),sina−sinb=2sin(2a−b)cos(2a+b)
We have,
L.H.S=sin2A2sin(2B−C)cos(2B+C)×2sin(2B+C)cos(2B−C)×sin2A +sin2B2sin(2C−A)cos(2C+A)×2sin(2C+A)cos(2C−A)×sin2B +sin2C2sin(2A−C)cos(2A+C)×2sin(2A+C)cos(2A−C)×sin2C
Using the formula, 2sinacosa=sin2a, we get,
L.H.S=sin2Asin(B+C)sin(B−C)×sin2A+sin2Bsin(C−A)sin(C+A)×sin2B+sin2Csin(A+B)sin(A−B)×sin2C
Now, we know that, in a ΔABC, ∠A+∠B+∠C=180∘, therefore,
B+C=180∘−AA+C=180∘−BA+B=180∘−C
Using the above results, we get,