Solveeit Logo

Question

Question: In any \(\Delta ABC\) , prove that \(a\cos A+b\cos B+c\cos C=2a\sin B\sin C\)...

In any ΔABC\Delta ABC , prove that
acosA+bcosB+ccosC=2asinBsinCa\cos A+b\cos B+c\cos C=2a\sin B\sin C

Explanation

Solution

Hint: Try to simplify the left-hand side of the equation given in the question by the application of the sine rule of a triangle followed by the use of the formula of sin2A and the formula of (sinX+sinY).

Complete step-by-step answer:
Before starting with the solution, let us draw a diagram for better visualisation.

Now starting with the left-hand side of the equation that is given in the question.
We know, according to the sine rule of the triangle: asinA=bsinB=csinC=k\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=k and in other terms, it can be written as:
a=ksinA b=ksinB c=ksinC \begin{aligned} & a=k\sin A \\\ & b=k\sin B \\\ & c=k\sin C \\\ \end{aligned}
So, applying this to our expression, we get
acosA+bcosB+ccosCa\cos A+b\cos B+c\cos C
=ksinAcosA+ksinBcosB+ksinCcosC=k\sin A\cos A+k\sin B\cos B+k\sin C\cos C

Now we will divide and multiply each term by 2. On doing so, we get
=k2×2×sinAcosA+k2×2×sinBcosB+k2×2×sinCcosC=\dfrac{k}{2}\times 2\times \sin A\cos A+\dfrac{k}{2}\times 2\times \sin B\cos B+\dfrac{k}{2}\times 2\times \sin C\cos C

Now, when we use the formula sin2X=2sinXcosX\sin 2X=2\operatorname{sinX}\operatorname{cosX} , we get
=k2(2sinAcosA+2sinBcosB+2sinCcosC)=\dfrac{k}{2}\left( 2\sin A\cos A+2\sin B\cos B+2\sin C\cos C \right)
=k2(sin2A+sin2B+sin2C)=\dfrac{k}{2}\left( \sin 2A+\sin 2B+\sin 2C \right)
According to the formula: 2sin(X+Y2)cos(XY2)=sin(X)+sin(Y)2\sin \left( \dfrac{X+Y}{2} \right)\cos \left( \dfrac{X-Y}{2} \right)=\sin \left( X \right)+sin\left( Y \right) , we get
=k2(2sin(2A+2B2)cos(2A2B2)+2sinCcosC)=\dfrac{k}{2}\left( 2\sin \left( \dfrac{2A+2B}{2} \right)\cos \left( \dfrac{2A-2B}{2} \right)+2\sin C\cos C \right)
=k(sin(A+B)cos(AB)+sinCcosC)=\dfrac{k}{{}}\left( \sin \left( A+B \right)\cos \left( A-B \right)+\sin C\cos C \right)

Now as ABC is a triangle, we can say:
A+B+C=180\angle A+\angle B+\angle C=180{}^\circ
A+B=180C\Rightarrow \angle A+\angle B=180{}^\circ -\angle C
So, substituting the value of A+B in our expression. On doing so, we get
=k(sin(180C)cos(AB)+sinCcosC)=k\left( \sin \left( 180{}^\circ -C \right)\cos \left( A-B \right)+\sin C\cos C \right)

We know sin(180X)=sinX\sin \left( 180{}^\circ -X \right)=\sin X . Using this in our expression, we get
=k(sinCcos(AB)+sinCcosC)=k\left( sinC\cos \left( A-B \right)+\sin C\cos C \right)
=ksinC(cos(AB)+cosC)=k\sin C\left( \cos \left( A-B \right)+\cos C \right)

Now we know cosX+cosY=2cos(X+Y2)cos(XY2)\operatorname{cosX}+cosY=2cos\left( \dfrac{X+Y}{2} \right)\cos \left( \dfrac{X-Y}{2} \right) . So, our expression becomes:
=ksinC(2cos(AB+C2)cos(ABC2))=k\sin C\left( 2\cos \left( \dfrac{A-B+C}{2} \right)\cos \left( \dfrac{A-B-C}{2} \right) \right)
=ksinC(2cos(1802B2)cos(1802A2))=k\sin C\left( 2\cos \left( \dfrac{180{}^\circ -2B}{2} \right)\cos \left( \dfrac{180{}^\circ -2A}{2} \right) \right)
=ksinC(2cos(90B)cos(90A))=k\sin C\left( 2\cos \left( 90{}^\circ -B \right)\cos \left( 90{}^\circ -A \right) \right)

We know sin(90X)=cosX and cos(90X)=sinX\sin \left( 90{}^\circ -X \right)=\cos X\text{ and cos}\left( 90{}^\circ -X \right)=\sin X . Using this in our expression, we get
=2ksinCsinAsinB=2k\sin C\sin A\sin B
Now according to the sine rule as mentioned above, a=ksinA.
=2asinCsinB=2a\sin C\sin B

The left-hand side of the equation given in the question is equal to the right-hand side of the equation. Hence, we can say that we have proved the equation given in the question.

Note: Be careful about the calculation and the signs while opening the brackets. Also, you need to learn the sine rule and the cosine rule as they are used very often. The k in the sine rule is twice the radius of the circumcircle of the triangle, i.e., sine rule can also be written as asinA=bsinB=csinC=k=2R=abc2Δ\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=k=2R=\dfrac{abc}{2\Delta } , where Δ\Delta represents the area of the triangle.