Question
Question: In an upper triangular matrix n×n, minimum number of zeros is...
In an upper triangular matrix n×n, minimum number of zeros is
A
2n(n−1)
B
2n(n+1)
C
22n(n−1)
D
None
Answer
2n(n−1)
Explanation
Solution
As we know a square matrix A=[aij] is called an upper triangular matrix if aij=0for all i>j
$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} & .... & a_{1(n - 2)} & a_{1(n - 1)} & a_{1n} \ 0 & a_{22} & a_{23} & a_{24} & .... & a_{2(n - 2)} & a_{2(n - 1)} & a_{2n} \ 0 & 0 & a_{33} & a_{34} & .... & a_{3(n - 2)} & a_{3(n - 1)} & a_{3n} \ 0 & 0 & 0 & a_{44} & .... & a_{4(n - 2)} & a_{4(n - 1)} & a_{4n} \
- & - & - & - & - & - & - & - \
- & - & - & - & - & - & - & - \ 0 & 0 & 0 & 0 & .... & 0 & a_{(n - 1)(n - 1)} & a_{(n - 1)n} \ 0 & 0 & 0 & 0 & .... & 0 & 0 & a_{nn} \end{bmatrix}Numberofzeros=(n - 1) + (n - 2) + ..... + 2 + 1 = \frac{(n - 1)n}{2}$