Solveeit Logo

Question

Question: In an LR-circuit, the inductive reactance is equal to the resistance R of the circuit. An e.m.f. \(E...

In an LR-circuit, the inductive reactance is equal to the resistance R of the circuit. An e.m.f. E=E0cos(ωt)E = E_{0}\cos(\omega t) is applied to the circuit. The power consumed in the circuit is

A

E02R\frac{E_{0}^{2}}{R}

B

E022R\frac{E_{0}^{2}}{2R}

C

E024R\frac{E_{0}^{2}}{4R}

D

E028R\frac{E_{0}^{2}}{8R}

Answer

E024R\frac{E_{0}^{2}}{4R}

Explanation

Solution

Power consumed P=Ermsirmscosφ=Erms(ErmsZ)RZP = E_{rms}i_{rms}\cos\varphi = E_{rms}\left( \frac{E_{rms}}{Z} \right)\frac{R}{Z}

P=Erms2RZ2;P = \frac{E_{rms}^{2}R}{Z^{2}}; where Z=R2+XL2Z = \sqrt{R^{2} + X_{L}^{2}}

Given XL=RX_{L} = RZ=2RZ = \sqrt{2}R also Erms=E02E_{rms} = \frac{E_{0}}{\sqrt{2}}P=E024RP = \frac{E_{0}^{2}}{4R}.