Solveeit Logo

Question

Mathematics Question on Distance of a Point From a Line

In an isosceles triangle ABC, the vertex A is (6,1)(6, 1) and the equation of the base BC is 2x+y=42x + y = 4. Let the point B lie on the line x+3y=7x + 3y = 7. If (α,β)(α, β) is the centroid of ΔABC, then 15(α+β)15(α + β) is equal to :

A

39

B

41

C

51

D

63

Answer

51

Explanation

Solution

In an isosceles triangle ABC, the vertex A is 6, 1 and the equation of the base BC is 2x + y = 4

2x+y=42x+y = 4 …….. (1)
2x+6y=142x+6y = 14 …….. (2)
On solving eq(1) and eq(2)
y=2, x=3y = 2, \ x = 3
B(1,2)B(1, 2) and C(k,42k)C(k, 4 – 2k)
Hence, AB2=AC2AB^2 = AC^2
52\+(1)2=(6k)2\+(3+2k)252 \+ (–1)^2 = (6 – k)^2 \+ (–3 + 2k)^2
5k224k\+19=0⇒ 5k^2 – 24k \+ 19 = 0
(5k19)(k1)=0(5k – 19)(k – 1) = 0
⇒ k=$$\frac {19}{5}

CC (195(\frac {19}{5},−185)\frac {18}{5}) ⇒ Centroid (α,β)(α, β)

α=6+1+1953α = \frac {6+1+\frac {19}{5}}{3}
α=185α = \frac {18}{5}
β=1+21853β = \frac {1+2-\frac {18}{5}}{3}

β=15β= -\frac 15

Now 15(α+β)15(α + β) =15(185+(15))= 15(\frac {18}{5}+(-\frac 15))
=15×175=15 \times \frac {17}{5}
=51= 51

So, the answer is (C): 5151.