Solveeit Logo

Question

Question: In an isosceles triangle *ABC*, the coordinates of the point *B* and *C* on the base *BC* are respec...

In an isosceles triangle ABC, the coordinates of the point B and C on the base BC are respectively (1, 2) and (2, 1). If the equation of the line AB is y=2xy = 2 x , then the equation of the line AC is

A

y=12(x1)y = \frac { 1 } { 2 } ( x - 1 )

B

y=x2y = \frac { x } { 2 }

C

y=x1y = x - 1

D

2y=x+32 y = x + 3

Answer

y=x2y = \frac { x } { 2 }

Explanation

Solution

Slope of BC = 1221=1\frac { 1 - 2 } { 2 - 1 } = - 1

\therefore ABC=ACB\angle A B C = \angle A C B

2+11+2(1)=m+11+m(1)\left| \frac { 2 + 1 } { 1 + 2 ( - 1 ) } \right| = \frac { m + 1 } { 1 + m ( - 1 ) }m+11m=3\frac { m + 1 } { 1 - m } = | - 3 |m+11m=±3\frac { m + 1 } { 1 - m } = \pm 3

m=2,12m = 2 , \frac { 1 } { 2 } .

But slope of AB is 2; \therefore m=12m = \frac { 1 } { 2 }

(Here m is the gradient of the line AC)

Equation of the line AC is y1=12(x2)y - 1 = \frac { 1 } { 2 } ( x - 2 )

x2y=0x - 2 y = 0 or y=x2y = \frac { x } { 2 } .