Solveeit Logo

Question

Question: In an isosceles triangle ABC; AB = AC = 10cm and BC = 18 cm. Find the value of: \({{\tan }^{2}}C-{{\...

In an isosceles triangle ABC; AB = AC = 10cm and BC = 18 cm. Find the value of: tan2Csec2B+2{{\tan }^{2}}C-{{\sec }^{2}}B+2.

Explanation

Solution

Hint: Use property of an isosceles triangle which is given as opposite angles of the two sides are equal if sides are equal. Now, use sine rule to find the value of the given expression. Sine rule is given as
sinAa=sinBb=sinCc\dfrac{\sin A}{a}=\dfrac{\sin B}{b}=\dfrac{\sin C}{c}

Complete step-by-step answer:
Here, we have an isosceles triangle ABC, such that AB = AC = 10cm and BC = 18cm. And need to determine the value of tan2Csec2B+2=?{{\tan }^{2}}C-{{\sec }^{2}}B+2=?
We know the property of an isosceles triangle that the opposite angles of the equal opposite side are equal to each other.
As AB = AC =10cm, hence B=C\angle B=\angle C by the above property.
Let B=C=θ\angle B=\angle C=\theta and hence A\angle A is given as 180o2θ{{180}^{o}}-2\theta by the property of triangle that sum of interior angles of a triangle is 180.{{180}^{\circ }}. Hence we get
B=C=θ A=180o2θ \begin{aligned} & \angle B=\angle C=\theta \\\ & \Rightarrow \angle A={{180}^{o}}-2\theta \\\ \end{aligned}
AB = AC = 10cm, BC = 18cm
The diagram for the triangle is as shown below:


So, we can apply ‘sine rule’ to calculate the given expression. Sine rule of any triangle ABC is given as
sinAa=sinBb=sinCc...........(i)\dfrac{\sin A}{a}=\dfrac{\sin B}{b}=\dfrac{\sin C}{c}...........\left( i \right)
Here a, b, c are opposite sides to the angles A,B,C.\angle A,\angle B,\angle C.
Hence, from the equation (i), we get
sin(180o2θ)18=sinθ10=sinθ10\dfrac{\sin \left( {{180}^{o}}-2\theta \right)}{18}=\dfrac{\sin \theta }{10}=\dfrac{\sin \theta }{10}
sin(180o2θ)18=sinθ10................(ii)\Rightarrow \dfrac{\sin \left( {{180}^{o}}-2\theta \right)}{18}=\dfrac{\sin \theta }{10}................\left( ii \right)
Now, we can replace sin(1802θ)\sin \left( {{180}^{\circ }}-2\theta \right) by sin2θ\sin 2\theta by the identity, sin(180θ)=sinθ\sin \left( 180-\theta \right)=\sin \theta .
Hence, we get equation (ii) as,
sin2θ18=sinθ10\dfrac{\sin 2\theta }{18}=\dfrac{\sin \theta }{10}
Now, use trigonometric identity sin2θ=2sinθcosθ\sin 2\theta =2\sin \theta \cos \theta . Hence, we get
2sinθcosθ18=sinθ10\dfrac{2\sin \theta \cos \theta }{18}=\dfrac{\sin \theta }{10}
Cancelling the like terms, we get
2cosθ18=110\dfrac{2\cos \theta }{18}=\dfrac{1}{10}
cosθ=910.................(iii)\Rightarrow \cos \theta =\dfrac{9}{10}.................\left( iii \right)
Now, replace θ\theta by B, we get
cosB=910\cos B=\dfrac{9}{10}
Now we know secθ=1cosθ\sec \theta =\dfrac{1}{\cos \theta } , so we get
secB=109..................(iv)\sec B=\dfrac{10}{9}..................\left( iv \right)
Now we know by Pythagoras theorem,
(Hypotenuse)2=(base)2+(perpendicular)2.........(v){{\left( Hypotenuse \right)}^{2}}={{(base)}^{2}}+{{(perpendicular)}^{2}}.........(v)
Now we know, cosB=910=basehypotenuse\cos B=\dfrac{9}{10}=\dfrac{base}{hypotenuse}, substituting these values in equation (v), we get
(10)2=(9)2+(perpendicular)2 perpendicular=10081=19 \begin{aligned} & {{\left( 10 \right)}^{2}}={{(9)}^{2}}+{{(perpendicular)}^{2}} \\\ & \Rightarrow perpendicular=\sqrt{100-81}=\sqrt{19} \\\ \end{aligned}
So, we can write,
tanB=PerpendicularBase=199...................(vi)\tan B=\dfrac{\text{Perpendicular}}{\text{Base}}=\dfrac{\sqrt{19}}{9}...................\left( vi \right)
Now, we can solve the expression tan2Csec2B+2.{{\tan }^{2}}C-{{\sec }^{2}}B+2. Let it’s value be ‘M’. Hence we get,
M=tan2Csec2B+2M={{\tan }^{2}}C-{{\sec }^{2}}B+2
Now, we know that B=C\angle B=\angle C (isosceles triangle), so we can write
M=tan2Bsec2B+2M={{\tan }^{2}}B-{{\sec }^{2}}B+2
Now, put values of tanB\tan B and secB\sec B from the equation (iv) and (vi) hence, we get
M=(199)2(109)2+2M={{\left( \dfrac{\sqrt{19}}{9} \right)}^{2}}-{{\left( \dfrac{10}{9} \right)}^{2}}+2
M=198110081+2\Rightarrow M=\dfrac{19}{81}-\dfrac{100}{81}+2
M=1910081+2 M=8181+2=1+2=1 \begin{aligned} & \Rightarrow M=\dfrac{19-100}{81}+2 \\\ & \Rightarrow M=\dfrac{-81}{81}+2=-1+2=1 \\\ \end{aligned}
So, the value of tan2Csec2B+2{{\tan }^{2}}C-{{\sec }^{2}}B+2 is 1.

Note: One can calculate value of tanC\tan Cand secB\sec B , using the cosine formula as well which is given as, cosθ=b2+c2a22bc\cos \theta =\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}
Here θ\theta is the angle between side ’b’ and ‘c’.
Another approach is when we find the value of secθ\sec \theta , we can calculate the value of tanθ\tan \theta using the formula, sec2θ=1+tan2θ{{\sec }^{2}}\theta =1+{{\tan }^{2}}\theta .